Facebook - konwersja
Pobierz fragment

Matematyka w uczeniu maszynowym - ebook

Wydawnictwo:
Tłumacz:
Data wydania:
20 września 2022
Format ebooka:
PDF
Format PDF
czytaj
na laptopie
czytaj
na tablecie
Format e-booków, który możesz odczytywać na tablecie oraz laptopie. Pliki PDF są odczytywane również przez czytniki i smartfony, jednakze względu na komfort czytania i brak możliwości skalowania czcionki, czytanie plików PDF na tych urządzeniach może być męczące dla oczu. Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na laptopie
Pliki PDF zabezpieczone watermarkiem możesz odczytać na dowolnym laptopie po zainstalowaniu czytnika dokumentów PDF. Najpowszechniejszym programem, który umożliwi odczytanie pliku PDF na laptopie, jest Adobe Reader. W zależności od potrzeb, możesz zainstalować również inny program - e-booki PDF pod względem sposobu odczytywania nie różnią niczym od powszechnie stosowanych dokumentów PDF, które odczytujemy każdego dnia.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na tablecie
Aby odczytywać e-booki na swoim tablecie musisz zainstalować specjalną aplikację. W zależności od formatu e-booka oraz systemu operacyjnego, który jest zainstalowany na Twoim urządzeniu może to być np. Bluefire dla EPUBa lub aplikacja Kindle dla formatu MOBI.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
Pobierz fragment
129,00

Matematyka w uczeniu maszynowym - ebook

Uczenie maszynowe staje się wszechobecne. Dzięki coraz lepszym narzędziom służącym do tworzenia aplikacji szczegóły techniczne związane z obliczeniami i modelami matematycznymi są często pomijane przez projektantów. Owszem, to wygodne podejście, ale wiąże się z ryzykiem braku świadomości co do wszystkich konsekwencji wybranych rozwiązań projektowych, szczególnie ich mocnych i słabych stron. A zatem bez ugruntowanych podstaw matematyki nie można mówić o profesjonalnym podejściu do uczenia maszynowego.

Ten podręcznik jest przeznaczony dla osób, które chcą dobrze zrozumieć matematyczne podstawy uczenia maszynowego i nabrać praktycznego doświadczenia w używaniu pojęć matematycznych. Wyjaśniono tutaj stosowanie szeregu technik matematycznych, takich jak algebra liniowa, geometria analityczna, rozkłady macierzy, rachunek wektorowy, optymalizacja, probabilistyka i statystyka. Następnie zaprezentowano matematyczne aspekty czterech podstawowych metod uczenia maszynowego: regresji liniowej, analizy głównych składowych, modeli mieszanin rozkładów Gaussa i maszyn wektorów nośnych. W każdym rozdziale znalazły się przykłady i ćwiczenia ułatwiające przyswojenie materiału.

W książce między innymi:

  • podstawy algebry: układy równań, macierze, przestrzenie afiniczne
  • rachunek prawdopodobieństwa, sprzężenia, optymalizacja
  • wnioskowanie z wykorzystaniem różnego rodzaju modeli
  • regresja liniowa i redukcja wymiarowości
  • maszyna wektorów nośnych i rozwiązania numeryczne

Matematyka: koniecznie, jeśli chcesz zrozumieć istotę sztucznej inteligencji!

Spis treści

Spis treści

Lista symboli

Lista skrótów i akronimów

Wstęp

Podziękowania

Część I. Podstawy matematyczne

  • 1. Wprowadzenie i motywacje
    • 1.1. Znajdowanie słów dla intuicji
    • 1.2. Dwa sposoby na przeczytanie tej książki
    • 1.3. Ćwiczenia i informacje zwrotne
  • 2. Algebra liniowa
    • 2.1. Układy równań liniowych
    • 2.2. Macierze
    • 2.3. Rozwiązywanie układów równań liniowych
    • 2.4. Przestrzenie wektorowe
    • 2.5. Niezależność liniowa
    • 2.6. Baza i rząd
    • 2.7. Przekształcenia liniowe
    • 2.8. Przestrzenie afiniczne
    • 2.9. Materiały dodatkowe
    • Ćwiczenia
  • 3. Geometria analityczna
    • 3.1. Normy
    • 3.2. Iloczyny wewnętrzne
    • 3.3. Długości i odległości
    • 3.4. Kąty i ortogonalność
    • 3.5. Baza ortonormalna
    • 3.6. Dopełnienie ortogonalne
    • 3.7. Iloczyn wewnętrzny funkcji
    • 3.8. Rzuty ortogonalne
    • 3.10. Materiały dodatkowe
    • Ćwiczenia
  • 4. Rozkłady macierzy
    • 4.1. Wyznacznik i ślad
    • 4.2. Wartości i wektory własne
    • 4.3. Rozkład Choleskiego
    • 4.4. Rozkład według wartości własnych i diagonalizacja
    • 4.5. Rozkład według wartości osobliwych
    • 4.6. Przybliżenie macierzy
    • 4.7. Filogeneza macierzy
    • 4.8. Materiały dodatkowe
    • Ćwiczenia
  • 5. Rachunek wektorowy
    • 5.1. Różniczkowanie funkcji jednowymiarowych
    • 5.2. Pochodne cząstkowe i gradienty
    • 5.3. Gradienty funkcji o wartościach wektorowych
    • 5.4. Gradienty macierzy
    • 5.5. Tożsamości przydatne w obliczeniach gradientów
    • 5.6. Propagacja wsteczna i różniczkowanie automatyczne
    • 5.7. Pochodne wyższych rzędów
    • 5.8. Linearyzacja i wielowymiarowe szeregi Taylora
    • 5.9. Materiały dodatkowe
    • Ćwiczenia
  • 6. Prawdopodobieństwo i jego rozkłady
    • 6.1. Struktura przestrzeni prawdopodobieństwa
    • 6.2. Prawdopodobieństwo ciągłe i dyskretne
    • 6.3. Reguły dodawania i mnożenia oraz twierdzenie Bayesa
    • 6.4. Statystyki podsumowujące i niezależność
    • 6.5. Rozkład Gaussa
    • 6.6. Sprzężenie i rodzina wykładnicza
    • 6.7. Zmiana zmiennych/przekształcenie odwrotne
    • 6.8. Materiały dodatkowe
    • Ćwiczenia
  • 7. Optymalizacja ciągła
    • 7.1. Optymalizacja za pomocą metody gradientu prostego
    • 7.2. Optymalizacja z ograniczeniami i mnożniki Lagrange'a
    • 7.3. Optymalizacja wypukła
    • 7.4. Materiały dodatkowe
    • Ćwiczenia

Część II. Centralne problemy uczenia maszynowego

  • 8. Gdy model spotyka dane
    • 8.1. Dane, modele i uczenie
    • 8.2. Minimalizacja ryzyka empirycznego
    • 8.3. Estymacja parametrów
    • 8.4. Modelowanie probabilistyczne i wnioskowanie
    • 8.5. Modele digrafowe
    • 8.6. Wybór modelu
  • 9. Regresja liniowa
    • 9.1. Sformułowanie problemu
    • 9.2. Estymacja parametrów
    • 9.3. Bayesowska regresja liniowa
    • 9.4. Estymacja metodą maksymalnej wiarygodności jako rzut ortogonalny
    • 9.5. Materiały dodatkowe
  • 10. Redukcja wymiarowości za pomocą analizy głównych składowych
    • 10.1. Sformułowanie problemu
    • 10.2. Perspektywa maksymalizacji wariancji
    • 10.3. Perspektywa rzutowania
    • 10.4. Znajdowanie wektora własnego i aproksymacja za pomocą macierzy niskiego rzędu
    • 10.5. PCA w dużej liczbie wymiarów
    • 10.6. Najważniejsze kroki algorytmu PCA z praktycznego punktu widzenia
    • 10.7. Perspektywa zmiennej ukrytej
    • 10.8. Materiały dodatkowe
  • 11. Szacowanie gęstości za pomocą modeli mieszanin rozkładów Gaussa
    • 11.1. Model mieszaniny rozkładów Gaussa
    • 11.2. Uczenie parametrów za pomocą metody maksymalnej wiarygodności
    • 11.3. Algorytm EM
    • 11.4. Perspektywa zmiennej ukrytej
    • 11.5. Materiały dodatkowe
  • 12. Klasyfikacja za pomocą maszyny wektorów nośnych
    • 12.1. Hiperpłaszczyzny rozdzielające
    • 12.2. Pierwotna maszyna wektorów nośnych
    • 12.3. Dualna maszyna wektorów nośnych
    • 12.4. Jądra
    • 12.5. Rozwiązanie numeryczne
    • 12.6. Materiały dodatkowe
  • Bibliografia
Kategoria: Matematyka
Zabezpieczenie: Watermark
Watermark
Watermarkowanie polega na znakowaniu plików wewnątrz treści, dzięki czemu możliwe jest rozpoznanie unikatowej licencji transakcyjnej Użytkownika. E-książki zabezpieczone watermarkiem można odczytywać na wszystkich urządzeniach odtwarzających wybrany format (czytniki, tablety, smartfony). Nie ma również ograniczeń liczby licencji oraz istnieje możliwość swobodnego przenoszenia plików między urządzeniami. Pliki z watermarkiem są kompatybilne z popularnymi programami do odczytywania ebooków, jak np. Calibre oraz aplikacjami na urządzenia mobilne na takie platformy jak iOS oraz Android.
ISBN: 978-83-283-8460-6
Rozmiar pliku: 14 MB

BESTSELLERY

Kategorie: