- nowość
Neural Networks and Deep Learning [DRM] - ebook
Wydawnictwo:
Data wydania:
25 sierpnia 2018
Format ebooka:
PDF
Format
PDF
czytaj
na laptopie
czytaj
na tablecie
Format e-booków, który możesz odczytywać na tablecie oraz
laptopie. Pliki PDF są odczytywane również przez czytniki i smartfony,
jednakze względu na komfort czytania i brak możliwości skalowania
czcionki, czytanie plików PDF na tych urządzeniach może być męczące dla
oczu. Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na laptopie
Pliki PDF zabezpieczone watermarkiem możesz odczytać na dowolnym
laptopie po zainstalowaniu czytnika dokumentów PDF. Najpowszechniejszym
programem, który umożliwi odczytanie pliku PDF na laptopie, jest Adobe
Reader. W zależności od potrzeb, możesz zainstalować również inny
program - e-booki PDF pod względem sposobu odczytywania nie różnią
niczym od powszechnie stosowanych dokumentów PDF, które odczytujemy
każdego dnia.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu
w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale
Pomoc.
czytaj
na tablecie
Aby odczytywać e-booki na swoim tablecie musisz zainstalować specjalną
aplikację. W zależności od formatu e-booka oraz systemu operacyjnego,
który jest zainstalowany na Twoim urządzeniu może to być np. Bluefire
dla EPUBa lub aplikacja Kindle dla formatu MOBI.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu
w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale
Pomoc.
Neural Networks and Deep Learning [DRM] - ebook
Ebook zabezpieczony DRM. Dowiedz się więcej https://www.empik.com/pomoc/faq-ebook.
Pamiętaj, ebook będzie dostępny do pobrania wyłącznie w wybranym przez Ciebie formacie.
Ebook po zakupie nie będzie dostępny do czytania w aplikacji Empik Go.
This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories:The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec.Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines.Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10.The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.
Pamiętaj, ebook będzie dostępny do pobrania wyłącznie w wybranym przez Ciebie formacie.
Ebook po zakupie nie będzie dostępny do czytania w aplikacji Empik Go.
This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories:The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec.Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines.Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10.The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.
Kategoria: | Computer Technology |
Język: | Angielski |
Zabezpieczenie: | brak |
ISBN: | 978-3-319-94463-0 |
Rozmiar pliku: | 12 MB |
BESTSELLERY
- Wydawnictwo: PublishDriveFormat: EPUBZabezpieczenie: Watermark VirtualoKategoria: Computer TechnologyCzy szukasz książki, która pozwoli Ci zapoznać się z podstawowymi pojęciami uczenia maszynowego? Moja książka wyjaśni Ci podstawowe pojęcia w sposób, który jest łatwy do zrozumienia. Po przeczytaniu tej książki, będziesz miał ...13,88 zł13,88 zł
- 84,99 zł
- 84,99 zł
- 170,39 zł
- 84,99 zł