Facebook - konwersja
Czytaj fragment
Pobierz fragment

Przygody matematyka. Wydanie filmowe - ebook

Wydawnictwo:
Data wydania:
14 kwietnia 2021
Format ebooka:
EPUB
Format EPUB
czytaj
na czytniku
czytaj
na tablecie
czytaj
na smartfonie
Jeden z najpopularniejszych formatów e-booków na świecie. Niezwykle wygodny i przyjazny czytelnikom - w przeciwieństwie do formatu PDF umożliwia skalowanie czcionki, dzięki czemu możliwe jest dopasowanie jej wielkości do kroju i rozmiarów ekranu. Więcej informacji znajdziesz w dziale Pomoc.
Multiformat
E-booki w Virtualo.pl dostępne są w opcji multiformatu. Oznacza to, że po dokonaniu zakupu, e-book pojawi się na Twoim koncie we wszystkich formatach dostępnych aktualnie dla danego tytułu. Informacja o dostępności poszczególnych formatów znajduje się na karcie produktu.
, MOBI
Format MOBI
czytaj
na czytniku
czytaj
na tablecie
czytaj
na smartfonie
Jeden z najczęściej wybieranych formatów wśród czytelników e-booków. Możesz go odczytać na czytniku Kindle oraz na smartfonach i tabletach po zainstalowaniu specjalnej aplikacji. Więcej informacji znajdziesz w dziale Pomoc.
Multiformat
E-booki w Virtualo.pl dostępne są w opcji multiformatu. Oznacza to, że po dokonaniu zakupu, e-book pojawi się na Twoim koncie we wszystkich formatach dostępnych aktualnie dla danego tytułu. Informacja o dostępności poszczególnych formatów znajduje się na karcie produktu.
(2w1)
Multiformat
E-booki sprzedawane w księgarni Virtualo.pl dostępne są w opcji multiformatu - kupujesz treść, nie format. Po dodaniu e-booka do koszyka i dokonaniu płatności, e-book pojawi się na Twoim koncie w Mojej Bibliotece we wszystkich formatach dostępnych aktualnie dla danego tytułu. Informacja o dostępności poszczególnych formatów znajduje się na karcie produktu przy okładce. Uwaga: audiobooki nie są objęte opcją multiformatu.
czytaj
na tablecie
Aby odczytywać e-booki na swoim tablecie musisz zainstalować specjalną aplikację. W zależności od formatu e-booka oraz systemu operacyjnego, który jest zainstalowany na Twoim urządzeniu może to być np. Bluefire dla EPUBa lub aplikacja Kindle dla formatu MOBI.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na czytniku
Czytanie na e-czytniku z ekranem e-ink jest bardzo wygodne i nie męczy wzroku. Pliki przystosowane do odczytywania na czytnikach to przede wszystkim EPUB (ten format możesz odczytać m.in. na czytnikach PocketBook) i MOBI (ten fromat możesz odczytać m.in. na czytnikach Kindle).
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na smartfonie
Aby odczytywać e-booki na swoim smartfonie musisz zainstalować specjalną aplikację. W zależności od formatu e-booka oraz systemu operacyjnego, który jest zainstalowany na Twoim urządzeniu może to być np. iBooks dla EPUBa lub aplikacja Kindle dla formatu MOBI.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
Czytaj fragment
Pobierz fragment
39,99

Przygody matematyka. Wydanie filmowe - ebook

Świat o nim zapomniał, choć jego wynalazki zmieniły bieg historii

Stanisław Ulam bez wątpienia był wizjonerem. Jako jeden z pierwszych naukowców używał komputerów do pracy naukowej. Zaproponował też prezydentowi Kennedy’emu, aby sfinansował badania umożliwiające wysłanie ludzi na Księżyc, i pracował nad wynalezieniem nuklearnego napędu stosowanego w pojazdach kosmicznych.

Jednak największym osiągnięciem lwowskiego matematyka było stworzenie bomby wodorowej. Całe przedsięwzięcie trzymano w ścisłej tajemnicy, a dokumenty z tego okresu wciąż nie zostały udostępnione. Naukowiec mówił, że bomba uczyni wojnę niemożliwą, lecz nie wiedział, jak bardzo się myli.

Dlaczego Ulam został zapomniany, choć jego wynalazki zmieniły świat, w którym żyjemy?

Ten człowiek” był wolnym strzelcem, pełnym kontrastów i sprzeczności: dumny Polak, który przed nikim się nie płaszczył, i zasymilowany Żyd agnostyk, bardzo wrażliwy na punkcie swojej przynależności etnicznej.

Françoise Aron Ulam, żona Stanisława Ulama

Powyższy opis pochodzi od wydawcy.

Kategoria: Literatura faktu
Zabezpieczenie: Watermark
Watermark
Watermarkowanie polega na znakowaniu plików wewnątrz treści, dzięki czemu możliwe jest rozpoznanie unikatowej licencji transakcyjnej Użytkownika. E-książki zabezpieczone watermarkiem można odczytywać na wszystkich urządzeniach odtwarzających wybrany format (czytniki, tablety, smartfony). Nie ma również ograniczeń liczby licencji oraz istnieje możliwość swobodnego przenoszenia plików między urządzeniami. Pliki z watermarkiem są kompatybilne z popularnymi programami do odczytywania ebooków, jak np. Calibre oraz aplikacjami na urządzenia mobilne na takie platformy jak iOS oraz Android.
ISBN: 978-83-240-5673-6
Rozmiar pliku: 17 MB

FRAGMENT KSIĄŻKI

PRZEDMOWA DO WYDANIA Z 1991 ROKU

Przedmowa do wydania z 1991 roku

_Wciąż jest dla mnie źródłem nieustającego zdziwienia, że kilka znaków nagryzmolonych na tablicy lub na kartce papieru może zmienić bieg ludzkich spraw._

S. M. Ulam

Ta uwaga Stanisława Ulama odnosi się w dużej mierze do jego własnych osiągnięć. Dzięki jego wkładowi w rozwój matematyki, fizyki, informatyki i w prace nad konstrukcją broni jądrowej świat jest dziś zupełnie inny niż dawniej.

Jeszcze jako uczeń gimnazjum we Lwowie, mieście należącym wówczas do Polski, podpisał swój notes: „S. Ulam, astronom, fizyk i matematyk”. Ostatecznie zainteresowania młodego i utalentowanego Ulama skupiły się na matematyce, nauce, do której polscy uczeni wnieśli w obecnym stuleciu najwięcej. Ulam urodził się w zamożnej rodzinie żydowskiej, której członkowie byli adwokatami, przedsiębiorcami i bankierami, dysponował więc niezbędnymi środkami, by pójść za głosem swojego intelektualnego instynktu i wcześnie ujawnionego talentu matematycznego. W 1933 roku ukończył studia na Politechnice Lwowskiej i uzyskał doktorat z czystej matematyki. Jak sam niegdyś powiedział, piękno czystej matematyki polega nie tylko na rygorystycznej logice dowodów i twierdzeń, ale także na poetyckiej elegancji i ekonomii wszystkich etapów matematycznego rozumowania. Ta właśnie najbardziej podstawowa, arystokratyczna postać matematyki była w latach młodości Ulama przedmiotem zainteresowania uczonych z polskiej szkoły matematycznej we Lwowie.

Pracownicy Politechniki Lwowskiej zajmujący się czystą matematyką nie byli stroniącymi od świata odludkami – prawie codziennie dyskutowali i bronili swych twierdzeń w kawiarniach i herbaciarniach Lwowa. Spotkania tych bez reszty oddanych swojej pracy uczonych, inspirujących się wzajemnie podczas publicznych dysput, pozwalały młodym studentom, takim jak Ulam, obserwować stan intelektualnego podniecenia i wysiłek twórczy wybitnych matematyków. Wkrótce młody Ulam zaczął brać udział w tych spotkaniach jako ich pełnoprawny uczestnik. Długie rozmowy, jakie prowadził w lwowskich kawiarniach ze Stefanem Banachem, Kazimierzem Kuratowskim, Stanisławem Mazurem, Hugonem Steinhausem i innymi uczonymi sprawiły, że bardzo wcześnie zaczął doceniać znaczenie twórczych dyskusji i koleżeńskiej współpracy. Pierwsze prace matematyczne Ulama, pochodzące z tego właśnie okresu, dotyczyły teorii mnogości, topologii, teorii grup i teorii miary. Doświadczenia zdobyte w lwowskiej szkole matematycznej ukształtowały jego niezwykle twórczy stosunek do nowych zagadnień matematycznych i naukowych.

Ponieważ na kilka lat przed wybuchem wojny sytuacja w Polsce znacznie się pogorszyła, Ulam chętnie skorzystał z możliwości wyjazdu do Princeton i na Uniwersytet Harvarda, a następnie przyjął posadę nauczyciela akademickiego na Uniwersytecie Stanu Wisconsin. Kiedy Stany Zjednoczone przystąpiły do wojny, współpracownicy i uczniowie Ulama zaczęli znikać w tajnych laboratoriach rządowych. Po nieudanej próbie zaciągnięcia się do armii amerykańskiej Ulam został zaproszony do Los Alamos przez swojego przyjaciela Johna von Neumanna, jednego z najwybitniejszych matematyków XX wieku. To właśnie w Los Alamos zainteresowania naukowe Ulama uległy metamorfozie, tam też powstało kilka jego najważniejszych prac.

Po przyjeździe do Los Alamos Ulam został przydzielony do grupy Edwarda Tellera, pracującej nad projektem superbomby. Była to pierwsza próba skonstruowania bomby wodorowej (termojądrowej). Oprócz małego zespołu Tellera wszyscy naukowcy w Los Alamos pracowali nad projektem bomby atomowej, wykorzystującej energię uwolnioną przy rozszczepieniu jąder uranu lub plutonu. Chociaż w Los Alamos panowała powszechna opinia, że bomba atomowa powinna zostać zbudowana przed superbombą, w której miała służyć jako zapalnik, Teller już wtedy zajmował się wyłącznie bombą wodorową i odmawiał udziału w pracach nad obliczeniami dotyczącymi rozszczepienia. Aby zatrzymać Tellera u siebie, Robert Oppenheimer, dyrektor laboratorium, pozwolił mu pracować nad bombą wodorową wraz z kilkoma naukowcami i pomocnikami. Pierwsze zadanie, jakie Teller wyznaczył Ulamowi po jego przyjeździe, polegało na zbadaniu wymiany energii pomiędzy swobodnymi elektronami i promieniowaniem w skrajnie gorącym gazie, który – jak się spodziewano – powinien tworzyć się podczas wybuchów bomb termojądrowych. Jak na ironię, właśnie ten pierwszy problem, jaki polecono rozwiązać Ulamowi w 1943 roku, stał się później głównym tematem jego prac prowadzonych wspólnie z Corneliusem Everettem, które udowodniły, że realizacja projektu superbomby sporządzonego przez Tellera jest niemożliwa.

To pierwsze zadanie z zakresu fizyki teoretycznej było początkiem wielkiej naukowej przemiany Ulama, który z ezoterycznego, abstrakcyjnego świata czystej matematyki przeszedł do zupełnie odmiennej gatunkowo matematyki stosowanej, nieodzownej przy formułowaniu i rozwiązywaniu problemów fizycznych. Matematyka potrzebna w Los Alamos obejmowała równania różniczkowe i całkowe, opisujące ruch gazów, promieniowanie i cząstki. Próby przejścia od czystej matematyki do fizyki są podejmowane bardzo rzadko, a jeszcze rzadziej kończą się tak pomyślnie, jak w przypadku Ulama. Proces twórczy prowadzący do formułowania nowych, istotnych idei fizycznych wymaga wyjątkowej intuicji i zdolności osądu, wykraczającej poza rygorystyczną logikę samej matematyki. Intuicja fizyczna, którą zdaje się posiadać bardzo niewielu matematyków, jest nierozerwalnie związana z opierającą się na doświadczeniu wiedzą o zjawiskach przyrody. Ulam twierdzi, że sam nigdy nie odczuł istnienia owej „przepaści pomiędzy rozumowaniem kategoriami czystej matematyki a rozumowaniem fizycznym”. A jednak w swoich wspomnieniach poświęca nieco miejsca owemu przejściu od czystej matematyki do fizyki, wyrażając nadzieję, że dokonana przez niego analiza „różnych sposobów myślenia naukowego może zainteresować czytelników”.

Ulam studiował fizykę pod kierunkiem największych naukowców swoich czasów. Uczeni, którzy zgromadzili się podczas wojny w Los Alamos, należeli do grona czołowych postaci fizyki współczesnej: Hans Bethe, Niels Bohr, Enrico Fermi, Richard Feynman, Ernest Lawrence, J. Robert Oppenheimer i wielu innych tworzyli zespół, który pod względem potencjału intelektualnego nie miał sobie równych w całej – wcześ­niejszej i późniejszej – historii fizyki.

Wkład Ulama w prace nad skonstruowaniem bomby atomowej polegał na przeprowadzeniu statystycznych badań rozgałęziania i powielania neutronów. Efektem tego procesu jest podtrzymywanie reakcji łańcuchowej i uwalnianie energii z uranu lub plutonu. Bardzo istotne zagadnienie, nad którym pracowali Ulam i von Neumann, polegało na szczegółowym obliczeniu przebiegu implozji uranowej kuli, spowodowanej wybuchem zewnętrznej bomby chemicznej. Przy kompresji uranu niewielka liczba naturalnie występujących neutronów, powstałych podczas przypadkowych rozszczepień jąder uranu, łatwiej zderza się z innymi jądrami. W wyniku niektórych zderzeń następują kolejne rozszczepienia. Powielają one liczbę neutronów, aż następuje szybka reakcja łańcuchowa. Ostatecznie proces ten prowadzi do wyzwolenia ogromnych ilości energii w postaci silnej eksplozji. Aby przewidzieć ilość uwolnionej energii, naukowcy z Los Alamos musieli ocenić zachowanie uranu podczas kompresji. Chociaż od strony teoretycznej problem ten nie nastręczał żadnych trudności, jego dokładne rozwiązanie nie było możliwe przy użyciu znanych wówczas metod matematycznych. Zagadnienie to stanowiło sekretne jądro badań nad bombą atomową w Los Alamos. Nawet słowo „implozja” było podczas wojny utajnione.

Najbardziej jednak godnym uwagi dokonaniem Ulama w Los Alamos był jego wkład w powojenne prace nad bombą wodorową. W bombie tej energia jądrowa jest wyzwalana wskutek połączenia (fuzji) dwóch jąder deuteru. W kwietniu 1946 roku Ulam uczestniczył w Los Alamos w spotkaniu, podczas którego omawiano i oceniano prace nad superbombą prowadzone w czasie wojny. „Klasyczny” pomysł polegał na podgrzaniu pewnej części ciekłego ładunku deuterowego i osiągnięciu zapłonu za pomocą bomby atomowej. Energia termiczna pochłonięta przez tę część ładunku zapoczątkowałaby reakcje jąder deuteru ze sobą, co podgrzałoby sąsiednie obszary i doprowadziłoby do dalszych reakcji termojądrowych, powodując eksplozję całego zapasu paliwa deuterowego. Deuter, cięższy izotop wodoru, ma w jądrze dodatkowy neutron. Uważano go za odpowiedniejsze paliwo niż wodór, ponieważ reaguje w znacznie niższych temperaturach. Trzeci izotop wodoru, tryt, ulega reakcji w jeszcze niższych temperaturach, ale w przeciwieństwie do deuteru jest niemal zupełnie nieobecny w przyrodzie, a jego produkcja w reaktorach jądrowych była niezwykle kosztowna.

Ocena projektu superbomby opracowanego przez Tellera była ostrożnie optymistyczna, uczestnicy spotkania zdawali sobie jednak sprawę z potencjalnych trudności natury technicznej związanych z tą konstrukcją. Omawiając wnioski z tego posiedzenia, J. Carson Mark napisał: „Dokonana ocena przebiegu kolejnych etapów reakcji i ich wzajemnych związków w rozpatrywanym typie urządzenia miała raczej charakter jakościowy, a kwestia szczegółów pozostała otwarta. Nie udzielono odpowiedzi na podstawowe pytanie, czy jakiekolwiek konkretne urządzenie tego typu będzie działać poprawnie”. Badania przeprowadzone przed 1946 rokiem pozwoliły ustalić, że bilans energetyczny superbomby wykazuje tylko minimalną przewagę zysku nad stratami i że nawet drobna zmiana konstrukcyjna może znacznie zmniejszyć szanse na udaną eksplozję. Oto, co pisze Mark:

Przeprowadzone badania udowodniły jedynie, że problem jest rzeczywiście bardzo trudny; procesy powodujące wyzwalanie energii oraz jej bezpowrotne straty miały porównywalne skutki. Z powodu wielkiej złożoności i różnorodności zachodzących tu procesów próba rozwiązania tego problemu wymagałaby przeprowadzenia niezwykle trudnej i bardzo szczegółowej analizy matematycznej – i to bez jakiejkolwiek gwarancji, że doprowadzi ona do sformułowania rozstrzygających wniosków.

Pod koniec 1949 i na początku 1950 roku problemy związane z zapłonem i podtrzymaniem reakcji termojądrowej nadal pozostawały nierozwiązane. Mimo to Teller zabiegał w Waszyngtonie o poparcie dla opracowanego przez swój zespół projektu superbomby i ostatecznie udało mu się na początku 1950 roku skłonić prezydenta Trumana do podjęcia decyzji o przyspieszeniu prac nad bombą wodorową.

Podstawowe pytania dotyczące konstrukcji superbomby brzmiały następująco: czy istnieje możliwość wywołania zapłonu części deuteru i zapoczątkowania w ten sposób reakcji termojądrowej oraz czy raz zapoczątkowana reakcja w ciekłym deuterze będzie się dalej rozprzestrzeniać, czy też – jeśli szybkość utraty energii z obszarów ogarniętych reakcją przekroczy tempo wyzwalania energii w tych reakcjach – ulegnie ona zahamowaniu? Zapłon superbomby wymagałby użycia zapalnika w postaci bomby atomowej, w którym dwa rozszczepialne ładunki uranowe o masie podkrytycznej zostałyby gwałtownie połączone w celu osiągnięcia wybuchowej masy ponadkrytycznej, tak jak w bombie zrzuconej na Hiroszimę. Problem zapłonu był trudny do rozwiązania. Niezwykle wysoka temperatura konieczna do osiągnięcia zapłonu wymagała zastosowania jako zapalnika bomby atomowej o wielkiej sile wybuchu, temperaturze i ilości materiału rozszczepialnego. W 1950 roku nie istniały bomby o tak wielkiej mocy. Nawet w najbardziej sprzyjających okolicznościach nie potrafiono doprowadzić do bezpośredniego zapłonu deuteru. Uważano, że można by użyć niewielkich ilości trytu, który pomógłby w zainicjowaniu syntezy deuteru w obszarze rozgrzanym początkowo przez bombę atomową.

Ten właśnie pierwszy poważny problem związany z konstrukcją superbomby stał się przedmiotem badań, jakie prowadził Ulam wspólnie ze swoim kolegą z Uniwersytetu Stanu Wisconsin Corneliusem Everettem, który po wojnie przyjechał na jego zaproszenie do Los Alamos. W swoich obliczeniach szczegółowo prześledzili początkowe stadia reakcji jądrowych w deuterze i trycie i ocenili, w jakim stopniu niezużyte paliwo jądrowe będzie podgrzewane przez gorące obszary, w których przebiega reakcja, z poprawką na straty energii wywołane rozszerzaniem i promieniowaniem. Obliczenia Everetta i Ulama były żmudne, pracochłonne i niezwykle trudne ze względu na skomplikowane zależności pomiędzy wieloma istotnymi czynnikami. Zagadnienie wymiany energii pomiędzy promieniowaniem i elektronami, którym zajmował się Ulam po swoim przyjeździe do Los Alamos, było tylko jednym z elementów tych długotrwałych obliczeń. Przez kilka miesięcy Ulam i Everett pracowali w wytężonym skupieniu od czterech do sześciu godzin dziennie. Ponieważ każdy kolejny etap ich pracy opierał się na dokonanych wcześniej obliczeniach, musiały być one praktycznie bezbłędne. Na szczęście Everett był prawdziwym perfekcjonistą w tej dziedzinie. Dziś trudno sobie wyobrazić, że obliczenia te przeprowadzano na suwakach logarytmicznych i staroświeckich mechanicznych kalkulatorach biurowych obsługiwanych ręcznie. Aby znaleźć właściwe rozwiązanie, uczeni musieli wielokrotnie opierać się na domysłach i przybliżonych obliczeniach. W tym czasie Ulam posiadał już jednak ogromną intuicję fizyczną umożliwiającą mu dokonywanie właściwej oceny. Niestety, przeprowadzone przez Ulama i Everetta badania wykazały, że do osiągnięcia zapłonu deuteru potrzebne są olbrzymie ilości trytu, w związku z czym cały projekt superbomby okazał się nieekonomiczny i wręcz niemożliwy do realizacji. Po kilku miesiącach wnioski z obliczeń Ulama i Everetta zostały potwierdzone w Princeton przez von Neumanna, który użył jednego z pierwszych komputerów elektronicznych.

Drugim problemem, jaki usiłował rozwiązać zespół pracujący nad projektem superbomby, była sprawa rozprzestrzeniania się obszaru, w którym zachodzi spalanie, na całą objętość ciekłego deuteru. Czy reakcja syntezy będzie się sama podtrzymywać przy założeniu, że trudności z osiągnięciem zapłonu zostaną w jakiś sposób przezwyciężone? Problem ten Ulam rozwiązał wspólnie z wybitnym fizykiem Enrico Fermim. Posługując się i tym razem suwakami logarytmicznymi oraz kalkulatorami biurowymi i dokonując z wielką ostrożnością przybliżonych ocen, doszli do kolejnego negatywnego wniosku: utrata ciepła z obszaru spalania deuteru jest zbyt wielka, by udało się podtrzymać reakcję. Podsumowując wyniki wspólnych obliczeń, Fermi stwierdził ostrożnie, że „gdyby przekroje czynne na reakcje jądrowe w jakiś sposób mogły stać się dwu- lub trzykrotnie większe, niż wynika z przeprowadzonych pomiarów, które stanowią podstawę tej pracy, reakcja mogłaby przebiegać pomyślniej”. W rzeczywistości przekroje czynne (od których zależy szybkość zachodzenia reakcji) używane przez zespół Tellera oraz przez Fermiego i Ulama w 1950 roku były większe niż przekroje czynne wynikające z dokładniejszych pomiarów Jamesa Tucka wykonanych rok później. W ostatnich latach obliczenia, nad którymi Ulam pracował wspólnie z Everettem, zostały przeprowadzone ponownie w znacznie bardziej precyzyjny sposób, z użyciem współczesnych komputerów. Potwierdziły one ograniczone możliwości samopodtrzymującej się propagacji.

W ciągu kilku miesięcy, jakie upłynęły od wydania przez prezydenta Trumana rozporządzenia nakazującego szybkie ukończenie prac nad bombą termojądrową, Ulam i jego koledzy dowiedli, że dwa podstawowe założenia konstrukcji superbomby Tellera były błędne. Innymi słowy, podjęto intensywne prace nad projektem, który miał zasadnicze usterki i który nigdy przedtem nie został dokładnie przetestowany. Według słów Hansa Bethego „Tellera oskarżono w Los Alamos o wciągnięcie laboratorium, a właściwie całego kraju, w awanturnicze przedsięwzięcie oparte na obliczeniach, które, jak sam powinien wiedzieć, były bardzo niedokładne”. Energia wyzwolona w reakcji deuteru zostanie utracona, zanim sąsiednie obszary zdążą osiągnąć temperaturę zapłonu, ponieważ – jak to wyjaśniał Ulam – „rozpad hydrodynamiczny następował szybciej niż rozwój reakcji umożliwiający jej podtrzymanie”. Teller, który pracował nad superbombą w czasie wojny, a później usilnie zabiegał o polityczne wsparcie dla swojego projektu, poczuł się całkowicie załamany wnioskami Ulama, Everetta i Fermiego. „Prace Ulama – pisał – wykazały, że byliśmy na złym tropie, że projekt bomby wodorowej, który wydawał nam się bardzo dobry, był w rzeczywistości niemożliwy do zrealizowania”.

Kryzys, który nastąpił po tych wydarzeniach, został zupełnie nieoczekiwanie przełamany przez Ulama w lutym 1951 roku. Zaproponował on metodę polegającą na sprężeniu deuteru, które umożliwiłoby zarówno osiągnięcie zapłonu, jak i samopodtrzymującą się propagację. Według Bethego, który podczas wojny był kierownikiem oddziału teoretycznego w Los Alamos, idea Ulama polegała na wykorzystaniu „rozchodzenia się mechanicznej fali uderzeniowej”, spowodowanej eksplozją atomową, do wywołania silnego sprężenia paliwa termojądrowego, co miało w ostateczności doprowadzić do gwałtownego wybuchu. Koncepcję wykorzystania sprężania do zwiększenia mocy reakcji termojądrowych omawiano już na posiedzeniu w kwietniu 1946 roku, ale nigdy nie brano jej poważnie pod uwagę, ponieważ wymagane sprężenie było znacznie większe niż to, które można było uzyskać przez eksplozje chemiczne. Kiedy Ulam powiedział Tellerowi o swoim pomyśle zastosowania bomby atomowej do sprężenia deuteru tuż przed zapłonem, Teller natychmiast pojął jego wartość. Zasugerował jednak, że zamiast wykorzystywać do tego celu mechaniczną falę uderzeniową – jak to proponował Ulam – można by osiągnąć implozję w lepszy sposób: za pomocą promieniowania, przez tak zwaną implozję radiacyjną. Nowy projekt bomby wodorowej, znanej pod nazwą „urządzenie Tellera-Ulama”, został szybko zaakceptowany przez naukowców z Los Alamos i urzędników rządowych. Od tego czasu mechanizm działania wszystkich bomb termojądrowych opierał się na wykorzystaniu eksplozji atomowej do wywołania wtórnego wybuchu termojądrowego wskutek implozji.

Wszystkie te ujawnione dopiero później szczegóły dotyczące początkowego okresu prac nad bombą wodorową dowodzą, że rola Ulama była tu znacznie większa niż wcześniej sądzono. Nie tylko pierwszy wykazał niesłuszność pierwotnej koncepcji superbomby, przy której uparcie obstawano przez wiele lat, ale poddał także pomysł rozwiązujący kwestię zapłonu i propagacji. Wtedy właśnie najwyraźniej w całej swej karierze dowiódł, że „kilka znaków nagryzmolonych na tablicy lub na kartce papieru” może radykalnie i nieodwracalnie zmienić „bieg ludzkich spraw”.

W swojej autobiografii Ulam porusza kilkakrotnie kwestię sposobu myślenia i roli społecznej naukowców pracujących dla armii, którzy, odizolowani w ściśle tajnych laboratoriach, wymyślają i konstruują potencjalne narzędzia masowej zagłady. Większość uczonych, którzy pracowali w Los Alamos podczas drugiej wojny światowej, była zaszokowana unicestwieniem japońskich miast i po wojnie zdecydowała się na powrót do życia akademickiego. Możliwe, że ludzie, którzy zostali w Los Alamos lub wrócili tam po jakimś czasie, byli w wielu wypadkach apolityczni i tak jak Ulam interesowali się „głównie naukową stroną swoich badań”, nie mając „żadnych wyrzutów sumienia z powodu powrotu do laboratorium i prowadzenia prac nad bombami atomowymi”. Chociaż Ulam twierdził później, że zapas broni jądrowej urósł ponad potrzebę, jego zdaniem nie było nic wewnętrznie „złego” w matematyce i prawach natury wykorzystanych do stworzenia nowej broni. Wiedza jako taka jest moralnie neutralna. Ulam nigdy „nie wątpił w sens czysto teoretycznej pracy” nad bronią jądrową, pozostawiając innym jej konstrukcję i zastosowanie w celach militarnych i politycznych.

Ulam czyni ciekawe rozróżnienie pomiędzy poszerzaniem przez naukowców wiedzy dotyczącej nowych narzędzi zagłady a jej dalszym rozpowszechnianiem: „Byłem całkowicie przekonany, że bezpieczniej jest pozostawić te sprawy naukowcom i ludziom potrafiącym dokonywać obiektywnych ocen, niż oddać je w ręce demagogów i szowinistów lub nawet polityków o dobrych chęciach, lecz niezorientowanych w zagadnieniach technicznych”. Jednak w laboratorium zbudowanym z rządowych funduszy, takim jak Los Alamos, nie ma ucieczki od zależności pomiędzy techniką wojenną a decyzjami politycznymi. Chociaż Ulam sądzi, „że nie należy rozpoczynać projektów, które mogą doprowadzić do tragicznych następstw”, twierdzi też, że „uczeni muszą zajmować się sprawami techniki”, gdyż w przeciwnym wypadku „mogą one dostać się w ręce niebezpiecznych i fanatycznych reakcjonistów”. Pomimo tych wyraźnych sprzeczności sposób, w jaki Ulam usprawiedliwia swój udział w pracach nad nową bronią, pozwala nam poznać osobisty stosunek uczonego z Los Alamos do końcowych wyników jego badań.

Pracując w Los Alamos Ulam miał dostęp do wielu nowoczesnych urządzeń, jakimi nie dysponowali uczeni zatrudnieni na uniwersytetach. Chodziło tu przede wszystkim o możliwość korzystania z najszybszych i największych spośród ówczesnych komputerów. Przez kilkadziesiąt lat po wojnie możliwości obliczeniowe laboratoriów wojskowych były znacznie większe niż laboratoriów uniwersyteckich, w których nie prowadzono prac nad zagadnieniami objętymi tajemnicą państwową. Możliwości te Ulam wykorzystał na wiele godnych uwagi sposobów.

Pierwsze komputery o dużej mocy obliczeniowej zaczęto produkować w czasie drugiej wojny światowej dla potrzeb armii. W chwili wybuchu wojny nie było jeszcze komputerów we współczesnym sensie tego słowa, istniało zaledwie kilka elektromechanicznych maszyn przekaźnikowych. Podczas wojny naukowcy z Uniwersytetu Stanu Pensylwania i poligonu Aberdeen w Maryland skonstruowali maszynę o nazwie ENIAC (Electronic Numerical Integrator And Computer), przystosowaną do obliczania tablic artyleryjskich dla armii. Według dzisiejszych kryteriów ten pierwszy komputer był powolny i słoniowaty: ENIAC działający na Uniwersytecie Stanu Pensylwania w 1945 roku ważył 30 ton, zawierał 18 tysięcy lamp i pół miliona lutowanych połączeń. Pobyt na uniwersytecie w 1944 roku zainspirował Johna von Neumanna do zaprojektowania komputera, który można było programować we współczesnym znaczeniu tego słowa. Mógł on wykonywać dowolne operacje, nie tylko te związane z obliczaniem tablic artyleryjskich. Nowy komputer miał zawierać obwody zdolne do wykonywania ciągów podstawowych operacji arytmetycznych, takich jak dodawanie i mnożenie. Von Neumann potrzebował wszechstronniejszego komputera do rozwiązania trudnego matematycznie zagadnienia implozji bomby atomowej, nad którym właśnie zastanawiano się w Los Alamos. Jednak pierwszy komputer elektroniczny w Los Alamos, znany jako MANIAC (Mathematical Analyzer, Numerical Integrator And Computer), został oddany do użytku dopiero w 1952 roku.

Jednym z pierwszych pomysłów Ulama było wykorzystanie szybkich komputerów do rozwiązywania różnorodnych zagadnień metodami statystycznymi, przy użyciu liczb losowych, sposobem zwanym Monte ­Carlo. Stawiając pasjansa, Ulam wpadł na pomysł, żeby prawdopodobieństwo otrzymania rozmaitych wyników wyznaczać poprzez symulację komputerową, w której zaprogramowano by wielokrotne układanie pasjansa. Kolejne karty można by wybierać z pozostałego stosu w sposób losowy, uwzględniając wagi związane z prawdopodobieństwem wyciągnięcia konkretnej karty. Komputer korzystałby z liczb losowych w każdym przypadku, kiedy zajdzie potrzeba dokonania nieobciążonego wyboru. Gdy komputer postawi pasjansa tysiące razy, prawdopodobieństwo wygranej będzie mogło zostać wyznaczone z dużą dokładnością. W zasadzie prawdopodobieństwo tego, że pasjans wyjdzie, można obliczyć na podstawie rachunku prawdopodobieństwa, bez komputerów. Jednak w praktyce jest to niemożliwe, ponieważ wymagałoby zbyt długich, wielostopniowych obliczeń na bardzo wielkich liczbach. Zaletą metody Monte Carlo jest możliwość skutecznego zaprogramowania komputera tak, by wykonywał każdy krok konkretnej gry zgodnie ze znanym prawdopodobieństwem, a ostateczny wynik może zostać wyznaczony z dowolną zadaną z góry dokładnością, zależnie od liczby rozgrywek przeprowadzonych w próbce. Pasjans jest przykładem zastosowania metody Monte Carlo do rozwiązywania problemów, których nie można pokonać inaczej, jak tylko przy użyciu „brutalnej siły” obliczeń.

Jednym z pierwszych zastosowań metody Monte Carlo było zbadanie – za pomocą bardzo szybkich komputerów – propagacji neutronów w bombach atomowych. Dokonano tego poprzez losowy wybór położenia radioaktywnego jądra wysyłającego neutron, a następnie losowano energię neutronu i odległość, jaką przebiegnie, zanim ucieknie lub zderzy się z jądrem innego atomu. W tym drugim przypadku neutron może ulec rozproszeniu, absorpcji albo wywołać kolejne rozszczepienie jądra. Wybór dokonywany jest znowu na podstawie liczb losowych, zgodnie z danymi prawdopodobieństwami. W ten sposób po zbadaniu historii wielu neutronów można było wyznaczyć liczbę neutronów o zadanej energii, poruszających się w konkretnym kierunku, w dowolnym punkcie urządzenia. Metoda Monte Carlo nadaje się też dobrze do obliczania własności równowagowych materiałów, oceniania wydajności promieniowania lub skuteczności detektorów cząstek o skomplikowanej geometrii i do symulowania danych doświadczalnych w rozmaitych zagadnieniach fizycznych.

Innym problemem, który zaczęto wówczas rozwiązywać przy użyciu techniki komputerowej, było wyznaczanie ruchu ośrodka ściśliwego. To właśnie obliczenia implozyjnych fal sprężania w rozszczepialnym rdzeniu bomb atomowych przekonały naukowców z Los Alamos do ­zalet szybkich komputerów. Biorąc udział w pracach nad ich nowym zastosowaniem, Ulam wpadł na pomysł przedstawienia ośrodka ściśliwego za pomocą reprezentatywnych punktów, których ruch może zostać wyznaczony przez komputer. W podobny sposób przeprowadził pierwsze badania skomplikowanego kolektywnego ruchu gwiazd w gromadzie, gdzie każda z gwiazd przyciągana jest siłą grawitacyjną przez wszystkie pozostałe. Zastosowanie komputerów do analizy ośrodków ściśliwych i układów gwiazdowych sposobem zbadanym po raz pierwszy przez Ulama stanowi obecnie podstawę wielu ważnych dziedzin nauki komputerowej.

Szczególnie interesujący jest nowatorski eksperyment, jaki Ulam przeprowadził w połowie lat pięćdziesiątych z Johnem Pastą i Enrico Fermim. Badali oni drgania łańcucha niewielkich ciężarków połączonych odrobinę nieliniowymi sprężynami. Nieliniowa sprężyna to taka, której rozciągnięcie nie jest dokładnie proporcjonalne do przyłożonej siły. Kiedy układ ciężarków symulowany przez komputer wprawiono na początku w dość prosty ruch, ku zdziwieniu Ulama i jego kolegów okazało się, że ciężarki w pewnym momencie wracają niemal do pozycji wyjściowej, i to po przejściu dziwacznej, niespodziewanej ewolucji. Dzisiaj komputerowe badania takich układów nieliniowych są przedmiotem badań interdyscyplinarnych. Odkryto wiele dziwnych własności układów dynamicznych, co doprowadziło do głębszego zrozumienia długookresowych własności układów nieliniowych, podlegających zwodniczo prostym prawom fizycznym.

Pokrewnym eksperymentem komputerowym zainspirowanym przez Ulama były iteracje przekształceń nieliniowych. Komputer zostaje wyposażony w (nieliniową) regułę przekształcania jednego punktu pewnego matematycznie określonego obszaru w drugi. Następnie ta sama reguła stosowana jest do nowego punktu i proces powtarza się wielokrotnie. Przebieg kilku pierwszych iteracji jest raczej nieciekawy, ale Ulam i jego kolega Paul Stein zaobserwowali, że jeśli użyć komputera do przeprowadzenia tysięcy powtórzeń, w wyniku mogą powstać różnorodne dziwne wzory. W niektórych przypadkach po wielu iteracjach punkty zbiegają do pojedynczego punktu albo układają się na krzywej w określonym obszarze. W innych przypadkach obrazy punktów otrzymywane w kolejnych iteracjach są nieuporządkowane i chaotyczne. Ostateczny wzór tworzony przez iterowanie obrazów punktu może zależeć od wyboru punktu początkowego, od którego zaczęto przekształcenia, a także od (nieliniowych) reguł iteracji. Prace prowadzone przez Ulama i Steina kontynuowane są obecnie w Los Alamos, które stało się ważnym ośrodkiem badań zjawisk nieliniowych.

Ulam interesował się również zastosowaniami matematyki w biologii. Jako przykład mogą tu posłużyć zapoczątkowane przez Ulama i von Neumanna badania nad poddziedziną automatów komórkowych. Wyobraźmy sobie płaszczyznę podzieloną jak szachownica na wiele małych kwadratów, gdzie na sąsiadujących ze sobą polach ustawiono kilka obiektów. Należy zdefiniować reguły pojawiania się nowych obiektów (i znikania starych) w każdym z kwadratów, w zależności od tego, czy sąsiednie pola są zajęte, czy też nie. Za każdym razem zastosowanie tych reguł prowadzi do ewolucji układu w czasie. Zależnie od stanu początkowego i reguł wzrostu, pewne generowane komputerowo automaty komórkowe ewoluują we wzory podobne do kryształów lub płatków śniegu, inne znajdują się w ciągłym ruchu, jakby byty żywe. W niektórych przypadkach kolonie samopowielających się wzorów zapełniają całą dostępną przestrzeń, jak przy wzroście korali lub bakterii na szalce Petriego.

Stanisław Ulam był człowiekiem obdarzonym niezwykle płodną wyobraźnią i twórczym, niemal wizjonerskim talentem. Jego prace zaowocowały powstaniem wielu nowych kierunków badań naukowych. Miał też wspaniałą pamięć – jeszcze po kilkudziesięciu latach potrafił wymienić nazwiska swoich szkolnych kolegów oraz cytować wiersze greckie i łacińskie, których nauczył się jako chłopiec. Już w latach młodości, kiedy to uczestniczył w spotkaniach naukowców w lwowskich kawiarniach, przekonał się, że najistotniejszym źródłem inspiracji są dla niego dyskusje z innymi uczonymi. Ten styl pracy okazał się całkowicie zgodny ze sposobem prowadzenia badań naukowych w Los Alamos. Ulam miał tam wielu utalentowanych kolegów, którzy – współpracując z nim – uzupełniali brakujące szczegóły nakreślonych przez niego pomysłów oraz przygotowywali artykuły naukowe i sprawozdania, które zmieniły bieg ludzkich spraw.

_William G. Mathews
Daniel O. Hirsh_

1. Portret Stanisława Ulama autorstwa Zygmunta Menkesa, 1938 r.PRZEDMOWA DO WYDANIA Z 1983 ROKU

Przedmowa do wydania z 1983 roku

Pisząc przedmowę do następnego wydania tej książki, nie mogę oprzeć się pokusie porównania teraźniejszości ze swoimi nieśmiałymi przewi­dywaniami sprzed dziesięciu lat. Muszę przyznać, że teraźniejszość wygląda znacznie ciekawiej, niż się spodziewałem. To wspaniałe obserwować pojawianie się nieprzewidzianych i nieprzewidywalnych faktów oraz idei. Należy przy tym uświadomić sobie, że tempo, w jakim zaczynamy rozumieć Wszechświat, jest tak samo istotne jak to, co w końcu uda nam się pojąć. Postęp w nauce i technice dokonuje się coraz szybciej. W związku z tym krótki okres, jaki upłynął od napisania tej książki, jest równie istotny jak dowolny inny okres w historii nauki. By sobie to uzmysłowić, wystarczy pomyśleć o lądowaniach na Księżycu, wystrzeliwaniu sztucznych satelitów, niezwykłych odkryciach zarówno w astronomii, jak i w badaniach samej Ziemi.

Najbardziej godny uwagi jest postęp, jaki dokonał się w dziedzinie komputerów, które znalazły zastosowanie w wielu sferach naszego codziennego życia. Obecnie powstają zarysy „metateorii” obliczeń, a zagadnienia związane z rozwiązywalnością w ogólnym sensie stały się przedmiotem owocnych badań, szczególnie jeśli chodzi o jej granice.

Zastanawiam się, jak zareagowałby na to wszystko John von Neumann. Przepowiedział wzrost roli maszyn obliczeniowych, ale chyba nawet on byłby zdziwiony rozmachem ery komputerów i szybkością, z jaką nadeszła.

Można by powiedzieć, że po erze atomowej nastąpiła era komputerów, która z kolei umożliwiła nastanie ery kosmicznej. Wszystkie pojazdy kosmiczne – rakiety, satelity, promy kosmiczne i inne – funkcjonują dzięki możliwości dokonywania bardzo szybkich obliczeń, które muszą być błyskawicznie przekazywane w przestrzeń kosmiczną celem korekcji ich orbit. Przed pojawieniem się najszybszych komputerów elektronicznych zdalne sterowanie tego typu nie było możliwe.

Bogactwo odkryć, jakich dokonano ostatnio w fizyce i astronomii, sprawiło, że zwiększyła się złożoność opisu Wszechświata. Zagadka kwazarów wciąż nie została rozwiązana. Obiekty te zdają się być odległe o miliardy lat świetlnych, a ich jasność przekracza setki razy jasność widocznych bliżej galaktyk. W ciągu kilku lat, jakie minęły od napisania tej książki, odkryto wielkie „puste obszary”, których rozmiary sięgają setek milionów lat świetlnych. Ich istnienie każe wątpić w jednorodność i izotropię Wszechświata, sugerowaną przez widoczną jednorodność promieniowania tła, jakie pozostało po Wielkim Wybuchu. Obecnie powszechny jest pogląd, że czarne dziury rzeczywiście istnieją. Można za ich pomocą wyjaśnić zachowanie wielu obserwowanych obiektów astronomicznych. Ponadto jest coraz więcej dowodów na potwierdzenie teorii, że eksplozje w obiektach gwiazdowych i galaktykach to wynik gwałtownych procesów tam zachodzących.

Dla matematyka takiego jak ja pytanie, czy Wszechświat jest przestrzennie skończony i ograniczony, czy też rozciąga się w nieskończoność, jest zagadnieniem numer jeden w kosmogonii i kosmologii.

W fizyce wciąż wzrasta liczba nowych, podstawowych, czyli elementarnych cząstek. Coraz powszechniej uważa się, że kwarki są rzeczywistymi, a nie tylko matematycznymi składnikami materii, lecz ich natura wymyka się kontroli, a uczeni rozważają istnienie subcząstek, takich jak gluony.

Moim zdaniem w ostatnim dziesięcioleciu stało się bardziej prawdopodobne, że istnieje nieskończony ciąg zstępujących struktur. Parafrazując znane powiedzenie o pchłach, duże kwarki mają na grzbiecie większe kwarki, które je gryzą, wielkie mają jeszcze większe, i tak _ad infinitum_.

Ostatnio wiele mówi się na temat podobieństwa różnych sił w przyrodzie lub identyczności tych sił. Na pewno istnieje analogia pomiędzy siłami elektromagnetycznymi a tak zwanymi oddziaływaniami słabymi. Być może istnieje nawet matematyczna analogia pomiędzy tymi siłami oraz siłami jądrowymi i grawitacyjnymi.

Narzędziem służącym do rozwiązywania tego typu problemów pozostaje nadal matematyka. Komputery okazały się ogromnie pomocne przy dokonywaniu skomplikowanych obliczeń, ale pojawiło się też bardzo wiele nowych rezultatów w dziedzinach czystej matematyki, na przykład w teorii liczb, algebrze i geometrii. Coraz szerszy zakres zastosowań „konstruktywnych” metod matematycznych, takich jak metoda Monte Carlo, pozwala przypuszczać, że teoria złożoności może w niedługim czasie zmienić wiele gałęzi matematyki i otworzyć nowe horyzonty. Niektóre zagadnienia fizyczne, na przykład badania i interpretacja przebiegu zderzeń cząstek w nowych, wielokilometrowych akceleratorach, wymagają gigantycznych obliczeń metodą Monte Carlo.

Modne jest obecnie badanie przekształceń i operacji nieliniowych. Zaczęło się od laboratorium w Los Alamos, które ma teraz osobny ośrodek, gdzie bada się tego typu zjawiska. W ośrodku tym odbyła się niedawno międzynarodowa konferencja na temat chaosu i porządku. Większa część tej pracy dotyczy własności iteracji – powtórzeń danej funkcji lub przekształcenia. Przy rozwiązywaniu takich zagadnień trzeba korzystać ze wskazówek eksperymentów matematycznych. Próby na komputerze mogą pomóc matematykowi domyślić się, jak wygląda jakościowe zachowanie przekształceń. Prace te są zarówno dalszym ciągiem badań, o których wspomniałem w rozdziale dwunastym, jak i kontynuacją prac prowadzonych w ubiegłych latach przez Paula Steina, przeze mnie i przez innych naukowców.

Duże partie fizyki można opisać za pomocą równań liniowych nieskończenie wielu zmiennych (jak w mechanice kwantowej), istnieje jednak wiele zagadnień, w tym hydrodynamika, które nie mają liniowego charakteru. Staje się coraz bardziej prawdopodobne, że u podstaw fizyki leżą prawa nieliniowe. Jak kiedyś powiedział Fermi: „W Biblii nie ma ani słowa o tym, że prawa natury dają się opisać liniowo!”.

Zdaniem fizyka-amatora, jakim jestem, wzrastające matematyczne wyrafinowanie fizyki teoretycznej wydaje się nieco przeszkadzać w prawdziwym zrozumieniu Wszechświata, zarówno w małej, jak i wielkiej skali. Coraz większe rozczłonkowanie może być częściowo skutkiem zaniedbań w nauczaniu historii nauki, z całą pewnością zaś jest wynikiem wzrastającej, często nadmiernej specjalizacji w wielu dziedzinach nauki, szczególnie w matematyce. Chociaż uważany jestem za dość oczytanego matematyka, wielokrotnie się zdarza, że nie rozumiem nawet tytułów nowo wydawanych książek.

Chciałbym też poświęcić parę słów sukcesom współczesnej biologii. Sądzę, że w ciągu ostatnich szesnastu lat byliśmy świadkami ogromnego postępu, jaki dokonał się w tej dziedzinie nauki. Każde nowe odkrycie przynosi inne niespodzianki. Geny, które miały być nieruchome i niezmienne, teraz wydają się przemieszczać. Kawałek kodu określający gen może „przeskoczyć”, zmieniając swoje położenie w chromosomie.

Wiemy obecnie, że niektóre odcinki kodu genetycznego nie są przepisami produkcji białek. Te – czasem dość długie – sekwencje, zwane intronami, znajdują się pomiędzy odcinkami chromosomów, w których zapisane są instrukcje. Nie jest jeszcze jasne, do czego służą introny.

Sukcesy związane z łączeniem genów – dodawaniem lub usuwaniem określonych genów z chromosomu – otworzyły nowy świat eksperymentów. Zastosowanie inżynierii genetycznej w takich naukach, jak na przykład nauki rolnicze, może przynieść niemal nieograniczone korzyści. W medycynie już teraz można produkować ludzką insulinę za pośrednictwem genetycznie zmienionych bakterii. Uczeni uzgodnili, że należy przedsięwziąć wszelkie środki ostrożności, aby nie dopuścić do stworzenia w wyniku doświadczeń genetycznych niebezpiecznych substancji. Jak się wydaje, biolodzy zgadzają się z tym stanowiskiem. Jednak wielka debata nad tym, czy należy pozwolić na niczym nieograniczony rozwój inżynierii genetycznej ze wszystkimi możliwymi konsekwencjami, trwa nadal.

Mój artykuł _Some Ideas and Prospects in Biomathematics_ (patrz: bibliografia) stanowi podsumowanie moich własnych prac teoretycznych z tej dziedziny. Ich tematem było porównanie fragmentów DNA, odpowiadających różnym białkom, za pomocą pojęcia odległości pomiędzy nimi. Prowadzi to do interesującej matematyki, która może zostać wykorzystana między innymi do naszkicowania możliwych kształtów ewolucyjnego drzewa organizmów. Pomysł zastosowania różnych kodów cytochromu C został zasugerowany przez biologa Emanuela Margoliasha, on też pierwszy prowadził badania na ten temat.

W Los Alamos grupa kierowana przez George’a Bella, Waltera Goada i innych biologów bada za pomocą komputerów wielką liczbę sekwencji DNA znanych obecnie z doświadczenia. Grupa ta zawarła ostatnio kontrakt z National lnstitute of Health, który zlecił jej założenie biblioteki takich sekwencji i ich wzajemnych zależności.

Jak wiadomo, stopniowe zmiany trudno jest zauważyć wtedy, gdy zachodzą, niezależnie od tego, jak bardzo są głębokie. Dopiero po jakimś czasie uświadamiamy sobie, że coś się zmieniło. Pewnego ranka w Los Alamos podczas wojny myślałem o niedostrzegalnych zmianach, które zaszły w moim życiu i które przywiodły mnie do tego dziwnego miejsca. Patrzyłem na błękitne niebo Nowego Meksyku i na powoli przesuwające się po nim obłoki, które pozornie nie zmieniały swego kształtu. Kiedy na minutę odwróciłem wzrok, a potem znowu spojrzałem w górę, stwierdziłem, że chmury są już całkiem inne. Kilka godzin później dyskutowałem o zmianach w teoriach fizycznych z Richardem Feynmanem. Nagle Feynman powiedział: „To jest tak jak z kształtem chmur. Kiedy się na nie patrzy, odnosi się wrażenie, że się nie zmieniają, ale jeśli popatrzeć minutę później, wszystko jest zupełnie inne”. Była to zastanawiająca koincydencja myśli.

W moim życiu osobistym też ciągle zachodzą zmiany. W 1976 roku opuściłem Uniwersytet Kolorado, przeszedłem na emeryturę i otrzymałem zaszczytny tytuł profesora honorowego. W tym samym czasie przyjąłem stanowisko profesora (bez obowiązków dydaktycznych) na Uniwersytecie Florydy w Gainesville, gdzie do dziś spędzam co roku kilka miesięcy, na ogół w zimie, kiedy nie jest za gorąco.

Wraz z Françoise, moją żoną, wyprowadziliśmy się z Boulder i kupiliśmy dom w Santa Fe, który stał się naszą bazą. Z Santa Fe jeżdżę trzy lub cztery razy w tygodniu do Laboratorium Los Alamos. Jego wspaniała biblioteka naukowa i możliwości obliczeniowe pozwalają mi kontynuować pracę nad niektórymi wspomnianymi wyżej dziedzinami nauki. Françoise pełni obowiązki mojego „sekretarza spraw domowych”, jak ją nazywam, czyniąc aluzję do brytyjskiego sekretarza spraw wewnętrznych. Wciąż dość dużo podróżujemy, a ja wykładam w wielu miejscach.

Mamy to szczęście, że nasza córka Claire – wraz z mężem Stevenem Weinerem, chirurgiem-ortopedą – również mieszka w Santa Fe. Ich córka Rebecca ma teraz pięć lat. Kiedy obserwuję, jak uczy się mówić i używa zdań podobnych, a jednak nie identycznych z tymi, które wcześniej usłyszała, zastanawiam się nad tym, jak niezwykłe są procesy uczenia się u małych dzieci. Daje mi to dodatkowe bodźce do prowadzenia prac nad ogólnym opisem analogii w sposób matematyczny.

Mój współpracownik, Dan Mauldin, profesor na Uniwersytecie Stanu Północny Teksas, zredagował ostatnio angielską wersję _Księgi szkockiej_, o której jest mowa w rozdziale drugim. Teraz pracujemy wspólnie nad zbiorem nowych, nierozwiązanych problemów. Książka ta będzie miała inny charakter niż wydany w 1960 roku zbiór pod tytułem _Collection of Mathematical Problems_. W nowym zbiorze więcej miejsca zajmie omówienie matematycznych idei związanych z fizyką teoretyczną i układami biologicznymi.

Wielu ludzi, o których wspomniałem w tej książce, zmarło od czasu jej napisania, czy też – jak woli mówić mój przyjaciel Paul Erdös – odeszło: Kazimierz Kuratowski, mój niegdysiejszy profesor; Karol Borsuk i Stanisław Mazur, moi koledzy z Polski; moi kuzyni Julek Ulam w Paryżu i Marysia Harcourt-Smith; w Boulder – Jane Richtmyer, która pomagała przy pisaniu pierwszej wersji tej książki, George Gamow i jego żona Barbara oraz moi współpracownicy w eksperymentach Monte Carlo, John Pasta i Ed Cashwell; tu, w Los Alamos (w odstępie kilku miesięcy) – angielski fizyk Jim Tuck i jego żona Elsie. Jak rzekł Horacy: _Omnes eadem idimur, omnium versatur urna sors exitura_.

Kilka tygodni temu poproszono mnie o wygłoszenie niedzielnej mowy w kościele unitarian w Los Alamos na temat „Czysta nauka w Los Alamos”. Dyskusja, która potem nastąpiła, skupiła się na zagadnieniach, które budzą dziś rosnące zaniepokojenie: mówiono o związku nauki i moralności, poruszano problem dobra i zła w odkryciach naukowych. Około 1910 roku Henri Poincaré, słynny francuski matematyk, rozważał podobne dylematy w swoich _Dernières Pensées_. Pytania te były podówczas mniej niepokojące. Uwolnienie energii jądrowej i powstanie możliwości manipulowania genami sprawiły, że problem ten stał się znacznie bardziej skomplikowany.

Zapytano mnie, co by się stało, gdyby w Los Alamos udowodniono, że zbudowanie bomby atomowej jest niemożliwe. Oczywiście świat byłby wówczas bezpieczniejszym miejscem, a ludzie nie musieliby obawiać się samobójczej wojny i całkowitej zagłady. Niestety, w fizyce niemal wcale nie ma dowodów nieistnienia, inaczej niż w matematyce, gdzie dowody takie stanowią bodaj najpiękniejsze przykłady czystej logiki. (Weźmy dowód Greków, że pierwiastek kwadratowy z dwóch nie jest liczbą wymierną, czyli ilorazem dwóch liczb całkowitych). Ludzkość, jak się wyda­je, nie jest jeszcze dostatecznie dojrzała emocjonalnie i umysłowo, by poradzić sobie z ogromnym przyrostem wiedzy, niezależnie od tego, czy dotyczy ona opanowania źródeł energii, czy też bezdusznych i prymitywnych procesów życiowych.

Jeden ze słuchaczy zastanawiał się, czy obecne badania nad ludzkim mózgiem nie doprowadzą w efekcie do powstania lepszego i mądrzejszego świata. Chciałbym w to wierzyć, ale możliwość ta wydaje się tak odległa, że trudno ją sobie nawet wyobrazić.

Podczas mojego życia w nauce dokonały się wielkie zmiany. Siedemdziesiąt lat to tylko około dwóch procent całej pisanej historii ludzkości. Kiedyś wspomniałem o tym w Princeton Robertowi Oppenheimerowi. Odpowiedział mi: „Ach! Jedna pięćdziesiąta to całkiem spora liczba, ale nie dla matematyków!”.

Czasem wydaje mi się, że najbardziej racjonalne wyjaśnienie wszystkiego, co zdarzyło się podczas mojego życia, brzmi tak: wciąż mam trzynaście lat i zasnąłem, czytając książkę Juliusza Verne’a lub H. G. Wellsa.

_S. M. U., Santa Fe, sierpień 1982_
mniej..

BESTSELLERY

Kategorie: