Facebook - konwersja
  • Empik Go W empik go

PyTorch Computer Vision Cookbook - ebook

Wydawnictwo:
Data wydania:
20 marca 2020
Format ebooka:
EPUB
Format EPUB
czytaj
na czytniku
czytaj
na tablecie
czytaj
na smartfonie
Jeden z najpopularniejszych formatów e-booków na świecie. Niezwykle wygodny i przyjazny czytelnikom - w przeciwieństwie do formatu PDF umożliwia skalowanie czcionki, dzięki czemu możliwe jest dopasowanie jej wielkości do kroju i rozmiarów ekranu. Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na tablecie
Aby odczytywać e-booki na swoim tablecie musisz zainstalować specjalną aplikację. W zależności od formatu e-booka oraz systemu operacyjnego, który jest zainstalowany na Twoim urządzeniu może to być np. Bluefire dla EPUBa lub aplikacja Kindle dla formatu MOBI.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na czytniku
Czytanie na e-czytniku z ekranem e-ink jest bardzo wygodne i nie męczy wzroku. Pliki przystosowane do odczytywania na czytnikach to przede wszystkim EPUB (ten format możesz odczytać m.in. na czytnikach PocketBook) i MOBI (ten fromat możesz odczytać m.in. na czytnikach Kindle).
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na smartfonie
Aby odczytywać e-booki na swoim smartfonie musisz zainstalować specjalną aplikację. W zależności od formatu e-booka oraz systemu operacyjnego, który jest zainstalowany na Twoim urządzeniu może to być np. iBooks dla EPUBa lub aplikacja Kindle dla formatu MOBI.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.

PyTorch Computer Vision Cookbook - ebook

Discover powerful ways to use deep learning algorithms and solve real-world computer vision problems using Python

Key Features

  • Solve the trickiest of problems in computer vision by combining the power of deep learning and neural networks
  • Leverage PyTorch 1.x capabilities to perform image classification, object detection, and more
  • Train and deploy enterprise-grade, deep learning models for computer vision applications

Book Description

Computer vision techniques play an integral role in helping developers gain a high-level understanding of digital images and videos. With this book, you’ll learn how to solve the trickiest problems in computer vision (CV) using the power of deep learning algorithms, and leverage the latest features of PyTorch 1.x to perform a variety of CV tasks.

Starting with a quick overview of the PyTorch library and key deep learning concepts, the book then covers common and not-so-common challenges faced while performing image recognition, image segmentation, object detection, image generation, and other tasks. Next, you’ll understand how to implement these tasks using various deep learning architectures such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and generative adversarial networks (GANs). Using a problem-solution approach, you’ll learn how to solve any issue you might face while fine-tuning the performance of a model or integrating it into your application. Later, you’ll get to grips with scaling your model to handle larger workloads, and implementing best practices for training models efficiently.

By the end of this CV book, you’ll be proficient in confidently solving many CV related problems using deep learning and PyTorch.

What you will learn

  • Develop, train and deploy deep learning algorithms using PyTorch 1.x
  • Understand how to fine-tune and change hyperparameters to train deep learning algorithms
  • Perform various CV tasks such as classification, detection, and segmentation
  • Implement a neural style transfer network based on CNNs and pre-trained models
  • Generate new images and implement adversarial attacks using GANs
  • Implement video classification models based on RNN, LSTM, and 3D-CNN
  • Discover best practices for training and deploying deep learning algorithms for CV applications

Who this book is for

Computer vision professionals, data scientists, deep learning engineers, and AI developers looking for quick solutions for various computer vision problems will find this book useful. Intermediate-level knowledge of computer vision concepts, along with Python programming experience is required.

Michael Avendi is a principal data scientist with vast experience in deep learning, computer vision, and medical imaging analysis. He works on the research and development of data-driven algorithms for various imaging problems, including medical imaging applications. His research papers have been published in major medical journals, including the Medical Imaging Analysis journal. Michael Avendi is an active Kaggle participant and was awarded a top prize in a Kaggle competition in 2017.
Kategoria: Computer Technology
Język: Angielski
Zabezpieczenie: Watermark
Watermark
Watermarkowanie polega na znakowaniu plików wewnątrz treści, dzięki czemu możliwe jest rozpoznanie unikatowej licencji transakcyjnej Użytkownika. E-książki zabezpieczone watermarkiem można odczytywać na wszystkich urządzeniach odtwarzających wybrany format (czytniki, tablety, smartfony). Nie ma również ograniczeń liczby licencji oraz istnieje możliwość swobodnego przenoszenia plików między urządzeniami. Pliki z watermarkiem są kompatybilne z popularnymi programami do odczytywania ebooków, jak np. Calibre oraz aplikacjami na urządzenia mobilne na takie platformy jak iOS oraz Android.
ISBN: 978-1-83864-143-6
Rozmiar pliku: 19 MB

BESTSELLERY

Kategorie: