Facebook - konwersja

Radość z abstrakcji. O matematyce, teorii kategorii i... życiu - ebook

Wydawnictwo:
Tłumacz:
Format:
MOBI
Data wydania:
22 października 2024
59,00
5900 pkt
punktów Virtualo

Radość z abstrakcji. O matematyce, teorii kategorii i... życiu - ebook

Matematyka nie ma najlepszej opinii. Niektórzy wręcz jej nienawidzą, wielu narzeka na jej nieprzydatność. Inni twierdzą, że jest sztywna, nietwórcza, nieciekawa i trudna, a także że nie ma nic wspólnego z prawdziwym życiem i przydaje się jedynie naukowcom i inżynierom. Nic bardziej mylnego! Matematyka, a szczególnie matematyka abstrakcyjna, jest nie tylko dziedziną nauki, ale i efektywnym sposobem myślenia. Koncentruje uwagę na tym, co istotne, a to z kolei pozwala dotrzeć do sedna. Jest przydatna w wielu praktycznych kwestiach, którymi każdy z nas zajmuje się na co dzień.

Ta książka stanowi twardy dowód, że matematyka jest elastyczna, kreatywna i radosna. Potraktuj ją jako fascynującą podróż przez świat matematyki abstrakcyjnej do teorii kategorii. Przekonaj się, że bez formalnej wiedzy w tej dziedzinie możesz rozwinąć umiejętność matematycznego myślenia. Abstrakcyjne idee matematyczne pomogą Ci inaczej spojrzeć na aktualne wydarzenia, kwestie sprawiedliwości społecznej i przywilejów społecznych czy nawet na COVID-19. Najpierw poznasz idee i zasady matematyki abstrakcyjnej, aby stopniowo przechodzić do bardziej technicznych zagadnień i istoty teorii kategorii. Omówienie jej najważniejszych elementów, takich jak transformacje naturalne i dualność, znajdziesz w ostatniej części książki, gdzie zawarto także wyniki bieżących badań nad wielowymiarową teorią kategorii.

Przekonaj się, jak piękna i fascynująca jest królowa nauk!

Spis treści

Prolog

  • Status matematyki
  • Dziedziny tradycyjnej matematyki
  • Metody tradycyjnej matematyki
  • Zawartość tej książki
  • Dla kogo jest ta książka

Część I. W stronę kategorii

  • 1. Kategorie - idea
    • 1.1. Abstrakcja i analogie
    • 1.2. Połączenia i unifikacja
    • 1.3. Kontekst
    • 1.4. Relacje
    • 1.5. Bycie tym samym
    • 1.6. Charakteryzowanie rzeczy według roli, jaką pełnią
    • 1.7. Przybliżanie i oddalanie
    • 1.8. Ramy i techniki
  • 2. Abstrakcja
    • 2.1. Czym jest matematyka?
    • 2.2. Logika i abstrakcja - bliźniacze dyscypliny
    • 2.3. Zapominanie szczegółów
    • 2.4. Zalety i wady
    • 2.5. Przekładanie analogii na rzeczywistość
    • 2.6. Różne abstrakcje tej samej rzeczy
    • 2.7. Abstrakcyjna podróż przez poziomy matematyki
  • 3. Wzorce
    • 3.1. Matematyka jako wykrywanie wzorców
    • 3.2. Wzory jako analogie
    • 3.3. Wzory jako oznaki struktury
    • 3.4. Struktura abstrakcyjna jako rodzaj wzoru
    • 3.5. Abstrakcja pomaga nam dostrzegać wzorce
  • 4. Kontekst
    • 4.1. Odległość
    • 4.2. Światy liczb
    • 4.3. Świat zerowy
  • 5. Relacje
    • 5.1. Relacje rodzinne
    • 5.2. Symetria
    • 5.3. Arytmetyka
    • 5.4 Arytmetyka modularna
    • 5.5. Czworokąty
    • 5.6. Kraty czynników
  • 6. Formalizmy
    • 6.1. Rodzaje turystów
    • 6.2. Dlaczego wyrażamy rzeczy w sposób formalny
    • 6.3. Przykład: przestrzenie metryczne
    • 6.4. Podstawy logiki
    • 6.5. Przykład: arytmetyka modularna
    • 6.6. Przykład: kraty czynników
  • 7. Relacje równoważności
    • 7.1. Badanie równości
    • 7.2. Idea relacji abstrakcyjnych
    • 7.3. Zwrotność
    • 7.4. Symetria
    • 7.5. Przechodniość
    • 7.6. Relacje równoważności
    • 7.7. Przykłady z matematyki
    • 7.8. Ciekawe porażki
  • 8. Kategorie - definicja
    • 8.1. Dane - obiekty i relacje
    • 8.2. Struktura - co możemy zrobić z danymi
    • 8.3. Własności - wymagania dotyczące konstrukcji
    • 8.4. Formalna definicja kategorii
    • 8.5. Problem rozmiaru
    • 8.6. Geometria łączności
    • 8.7. Rysowanie przydatnych diagramów
    • 8.8. Cel kompozycji

Interludium. Wycieczka po świecie matematyki

  • 9. Przykłady, które już pokazałam, ale nie wprost
    • 9.1. Symetria
    • 9.2. Relacje równoważności
    • 9.3. Czynniki pierwsze
    • 9.4. Systemy liczbowe
  • 10. Zbiory uporządkowane
    • 10.1. Zbiór uporządkowany liniowo
    • 10.2. Zbiory częściowo uporządkowane
  • 11. Małe struktury matematyczne
    • 11.1. Małe, możliwe do narysowania przykłady
    • 11.2. Monoidy
    • 11.3. Grupy
    • 11.4. Punkty i ścieżki
  • 12. Zbiory i funkcje
    • 12.1. Funkcje
    • 12.2. Struktura - identyczności i kompozycja
    • 12.3. Własności - prawa jednostkowe i łączność
    • 12.4. Kategoria zbiorów i funkcji
  • 13. Duże światy struktur matematycznych
    • 13.1. Monoidy
    • 13.2. Grupy
    • 13.3. Zbiory częściowo uporządkowane
    • 13.4. Przestrzenie topologiczne
    • 13.5. Kategorie
    • 13.6. Macierze

Część II. Uprawianie teorii kategorii

  • 14. Izomorfizmy
    • 14.1. Bycie tym samym
    • 14.2. Odwracalność
    • 14.3. Izomorfizmy w kategorii
    • 14.4. Traktowanie obiektów izomorficznych jako takich samych
    • 14.5. Izomorfizmy zbiorów
    • 14.6. Izomorfizmy dużych struktur
    • 14.7. Inne zagadnienia dotyczące izomorfizmów
  • 15. Moniki i epiki
    • 15.1. Asymetria funkcji
    • 15.2. Iniekcje i surjekcje
    • 15.3. Moniki - kategorialne iniekcje
    • 15.4. Epiki - kategorialne surjekcje
    • 15.5. Związki z izomorfizmami
    • 15.6. Monoidy
    • 15.7. Inne zagadnienia
  • 16. Własności uniwersalne
    • 16.1. Rola a charakter
    • 16.2. Skrajności
    • 16.3. Definicja formalna
    • 16.4. Unikalność
    • 16.5. Obiekty końcowe
    • 16.6. Sposoby na porażkę
    • 16.7. Przykłady
    • 16.8. Kontekst
    • 16.9. Inne zagadnienia
  • 17. Dualność
    • 17.1. Obracanie strzałek
    • 17.2. Kategoria dualna
    • 17.3. Moniki i epiki
    • 17.4. Obiekty początkowe i końcowe
    • 17.5. Alternatywna definicja kategorii
  • 18. Produkty i koprodukty
    • 18.1. Idea produktów w kategorii
    • 18.2. Definicja formalna
    • 18.3. Produkty jako obiekty końcowe
    • 18.4. Produkty w Set
    • 18.5. Unikalność produktów w Set
    • 18.6. Produkty w kategorii zbiorów częściowo uporządkowanych
    • 18.7. Kategoria zbiorów częściowo uporządkowanych
    • 18.8. Monoidy i grupy
    • 18.9. Niektóre kluczowe morfizmy indukowane przez produkty
    • 18.10. Dualność - koprodukty
    • 18.11. Koprodukty w Set
    • 18.12. Dekategoryfikacja - związki z arytmetyką
    • 18.13. Koprodukty w innych kategoriach
    • 18.14. Inne zagadnienia
  • 19. Pullbacki i pushouty
    • 19.1. Pullbacki
    • 19.2. Pullbacki w Set
    • 19.3. Pullbacki jako obiekty końcowe w jakiejś kategorii
    • 19.4. Przykład: definiowanie kategorii za pomocą pullbacków
    • 19.5. Pojęcie dualne - pushout
    • 19.6. Pushouty w Set
    • 19.7. Pushouty w topologii
    • 19.8. Inne zagadnienia
  • 20. Funktory
    • 20.1. Tworzenie definicji
    • 20.2. Funktory pomiędzy małymi przykładami
    • 20.3. Funktory z małych, możliwych do narysowania kategorii
    • 20.4. Funktory wolne i zapominania
    • 20.5. Zachowanie i odzwierciedlanie struktury
    • 20.6. Inne zagadnienia
  • 21. Kategorie kategorii
    • 21.1. Kategoria Cat
    • 21.2. Kategorie końcowe i początkowe
    • 21.3. Produkty i koprodukty kategorii
    • 21.4. Izomorfizmy kategorii
    • 21.5. Funktory pełne oraz wierne
  • 22. Transformacje naturalne
    • 22.1. Definicja na podstawie naszych intuicji
    • 22.2. Uwaga na temat homotopii
    • 22.3. Kształt
    • 22.4. Kategorie funktorów
    • 22.5. Diagramy i stożki nad diagramami
    • 22.6. Izomorfizmy naturalne
    • 22.7. Równoważność kategorii
    • 22.8. Przykłady równoważności dużych kategorii
    • 22.9. Kompozycja pozioma
    • 22.10. Wymienność
    • 22.11. Połączenie tego wszystkiego w jedną całość
  • 23. Yoneda
    • 23.1. Radość z Yonedy
    • 23.2. Ponowne spojrzenie na bycie tym samym
    • 23.3. Funktory reprezentowalne
    • 23.4. Osadzenie Yonedy
    • 23.5. Lemat Yonedy
    • 23.6. Inne zagadnienia
  • 24. Wyższe wymiary
    • 24.1. Dlaczego wyższe wymiary?
    • 24.2. Bezpośrednia definicja 2-kategorii
    • 24.3. Powtórne spojrzenie na homsety
    • 24.4. Od grafów bazowych do 2-grafów
    • 24.5. Kategorie monoidalne
    • 24.6. Ścisłość kontra słabość
    • 24.7. Spójność
    • 24.8. Degeneracja
    • 24.9. n i nieskończoność
    • 24.10. Morał z tej historii
  • Epilog. Myślenie kategorialne

Dodatki

  • Dodatek A. Alfabety
  • Dodatek B. Podstawy logiki
  • Dodatek C. Podstawy teorii mnogości
  • Dodatek D. Podstawy przestrzeni topologicznych

Słowniczek

Literatura

Podziękowania

 

Kategoria: Matematyka
Zabezpieczenie: Watermark
Watermark
Watermarkowanie polega na znakowaniu plików wewnątrz treści, dzięki czemu możliwe jest rozpoznanie unikatowej licencji transakcyjnej Użytkownika. E-książki zabezpieczone watermarkiem można odczytywać na wszystkich urządzeniach odtwarzających wybrany format (czytniki, tablety, smartfony). Nie ma również ograniczeń liczby licencji oraz istnieje możliwość swobodnego przenoszenia plików między urządzeniami. Pliki z watermarkiem są kompatybilne z popularnymi programami do odczytywania ebooków, jak np. Calibre oraz aplikacjami na urządzenia mobilne na takie platformy jak iOS oraz Android.
ISBN: 978-83-8322-959-1
Rozmiar pliku: 90 MB

BESTSELLERY

Menu

Zamknij