Facebook - konwersja
Darmowy fragment

  • promocja

Sztuczna inteligencja. Nowe spojrzenie. Wydanie 4. Tom 1 - ebook

Wydawnictwo:
Format:
PDF
Data wydania:
10 stycznia 2023
14365 pkt
punktów Virtualo

Sztuczna inteligencja. Nowe spojrzenie. Wydanie 4. Tom 1 - ebook

Sztuczna inteligencja budzi zachwyt i kontrowersje. W porównaniu z innymi gałęziami nauki jest stosunkowo młoda: liczy około siedemdziesięciu lat, mimo że czerpie ze znacznie starszych idei. Jednak błyskawiczny rozwój sztucznej inteligencji i przeobrażanie osiągnięć nauki w działające technologie sprawiają, że wyrobienie poglądu na całokształt tej dziedziny jest trudnym zadaniem. Warto więc spojrzeć na historię rozwoju sztucznej inteligencji z perspektywy jej współczesnych osiągnięć i dzięki temu lepiej zrozumieć, czym ta nauka jest w swojej istocie i dokąd podąża.

Oto pierwszy tom dzieła, które stanowi inspirujące spojrzenie na sztuczną inteligencję. Jego zrozumienie nie wymaga wybitnej znajomości informatyki i matematyki. Książka jest wspaniałą syntezą wczesnych i późniejszych koncepcji, a także technik, przeprowadzoną we frameworku idei, metod i technologii. Zawiera ogrom rzetelnej wiedzy przekazanej w niezbyt sformalizowany sposób. Opisy, formuły matematyczne i algorytmy, pokazane w formie czytelnego pseudokodu, cechują się przejrzystością i precyzją. Zaprezentowano tu wszystkie ważne idee i koncepcje sztucznej inteligencji, zgodnie z najnowszymi trendami i osiągnięciami.

W tomie pierwszym między innymi:

  • koncepcje sztucznej inteligencji
  • różne podejścia do rozwiązywania problemów z wykorzystaniem sztucznej inteligencji
  • reprezentacja wiedzy i modelowanie, a także wyszukiwanie i planowanie
  • wnioskowanie w warunkach niepewności
  • podejmowanie złożonych decyzji, również w środowisku wieloagentowym

Sztuczna inteligencja: to się staje na naszych oczach!

Spis treści


Zanim przemówią autorzy...

Przedmowa

O autorach

I. Sztuczna inteligencja

Rozdział 1. Wstęp

  • 1.1. Czym jest sztuczna inteligencja?
  • 1.2. Podstawy sztucznej inteligencji
  • 1.3. Historia sztucznej inteligencji
  • 1.4. Stan obecny
  • 1.5. Spodziewane korzyści i ryzyko
  • Podsumowanie
  • Bibliografia i uwagi historyczne

Rozdział 2. Inteligentni agenci

  • 2.1. Agenci i ich środowiska
  • 2.2. Właściwe zachowanie - koncepcja racjonalności
  • 2.3. Natura środowiska
  • 2.4. Struktura agenta
  • Podsumowanie
  • Bibliografia i uwagi historyczne

Ii. Rozwiązywanie problemów

Rozdział 3. Rozwiązywanie problemów za pomocą wyszukiwania

  • 3.1. Agent rozwiązujący problem
  • 3.2. Przykładowe problemy
  • 3.3. Algorytmy wyszukiwania
  • 3.4. Strategie wyszukiwania niedoinformowanego
  • 3.5. Strategie wyszukiwania poinformowanego (heurystycznego)
  • 3.6. Funkcje heurystyczne
  • Podsumowanie
  • Bibliografia i uwagi historyczne

Rozdział 4. Wyszukiwanie w złożonych środowiskach

  • 4.1. Wyszukiwanie lokalne i problemy optymalizacyjne
  • 4.2. Wyszukiwanie lokalne w przestrzeniach ciągłych
  • 4.3. Wyszukiwanie z niedeterministycznymi akcjami
  • 4.4. Wyszukiwanie w środowiskach częściowo obserwowalnych
  • 4.5. Wyszukiwanie online i nieznane środowiska
  • Podsumowanie
  • Bibliografia i uwagi historyczne

Rozdział 5. Wyszukiwanie antagonistyczne i gry

  • 5.1. Teoria gier
  • 5.2. Optymalne decyzje w grach
  • 5.3. Heurystyczne wyszukiwanie alfa-beta
  • 5.4. Wyszukiwanie monte carlo
  • 5.5. Gry stochastyczne
  • 5.6. Gry z częściową obserwowalnością
  • 5.7. Ograniczenia algorytmów wyszukiwania w grach
  • Podsumowanie
  • Bibliografia i uwagi historyczne

Rozdział 6. Problemy spełniania ograniczeń

  • 6.1. Definiowanie problemów spełniania ograniczeń
  • 6.2. Propagacja ograniczeń - wnioskowanie w cps
  • 6.3. Wyszukiwanie z nawrotami w cps
  • 6.4. Wyszukiwanie lokalne na usługach csp
  • 6.5. Struktura problemów csp
  • Podsumowanie
  • Bibliografia i uwagi historyczne

Iii. Wiedza, wnioskowanie i planowanie

Rozdział 7. Logiczni agenci

  • 7.1. Agent bazujący na wiedzy
  • 7.2. Świat wumpusa
  • 7.3. Podstawy logiki
  • 7.4. Rachunek zdań - bardzo prosta logika
  • 7.5. Dowodzenie twierdzeń w rachunku zdań
  • 7.6. Efektywne sprawdzanie modeli w rachunku zdań
  • 7.7. Agent na gruncie rachunku zdań
  • Podsumowanie
  • Bibliografia i uwagi historyczne

Rozdział 8. Logika pierwszego rzędu

  • 8.1. Ponownie o reprezentacji
  • 8.2. Składnia i semantyka logiki pierwszego rzędu
  • 8.3. Wykorzystywanie logiki pierwszego rzędu
  • 8.4. Inżynieria wiedzy w logice pierwszego rzędu
  • Podsumowanie
  • Bibliografia i uwagi historyczne

Rozdział 9. Wnioskowanie w logice pierwszego rzędu

  • 9.1. Wnioskowanie w rachunku zdań a wnioskowanie w logice pierwszego rzędu
  • 9.2. Unifikacja a wnioskowanie w logice pierwszego rzędu
  • 9.3. Łańcuchowanie progresywne
  • 9.4. Łańcuchowanie regresywne
  • 9.5. Rezolucja
  • Podsumowanie
  • Bibliografia i uwagi historyczne

Rozdział 10. Reprezentacja wiedzy

  • 10.1. Inżynieria ontologii
  • 10.2. Kategorie i obiekty
  • 10.3. Zdarzenia
  • 10.4. Obiekty mentalne i logika modalna
  • 10.5. Systemy wnioskowania dla kategorii
  • 10.6. Wnioskowanie na podstawie domniemań
  • Podsumowanie
  • Bibliografia i uwagi historyczne

Rozdział 11. Automatyczne planowanie

  • 11.1. Klasyczne planowanie - co to jest?
  • 11.2. Algorytmy klasycznego planowania
  • 11.3. Heurystyki w planowaniu
  • 11.4. Planowanie hierarchiczne
  • 11.5. Planowanie i działanie w domenach niedeterministycznych
  • 11.6. Czas, harmonogramy i zasoby
  • 11.7. Analiza podejść planistycznych
  • Podsumowanie
  • Bibliografia i uwagi historyczne

Iv. Wnioskowanie w warunkach niepewności

Rozdział 12. Kwantyfikowanie niepewności

  • 12.1. Działając w warunkach niepewności
  • 12.2. Notacja probabilistyczna
  • 12.3. Wnioskowanie z pełnych wspólnych rozkładów
  • 12.4. Niezależność
  • 12.5. Reguła bayesa i jej wykorzystywanie
  • 12.6. Naiwne modele bayesowskie
  • 12.7. Odwiedzamy świat wumpusa
  • Podsumowanie
  • Bibliografia i uwagi historyczne

Rozdział 13. Wnioskowanie probabilistyczne

  • 13.1. Reprezentowanie wiedzy w niepewnej domenie
  • 13.2. Semantyka sieci bayesowskich
  • 13.3. Ścisłe wnioskowanie w sieciach bayesowskich
  • 13.4. Aproksymowane wnioskowanie w sieciach bayesowskich
  • 13.5. Sieci przyczynowe
  • Podsumowanie
  • Bibliografia i uwagi historyczne

Rozdział 14. Probabilistyczne wnioskowanie w czasie

  • 14.1. Czas a niepewność
  • 14.2. Wnioskowanie w modelach temporalnych
  • 14.3. Ukryte modele markowa
  • 14.4. Filtrowanie kalmana
  • 14.5. Dynamiczne sieci bayesowskie (dbn)
  • Podsumowanie
  • Bibliografia i uwagi historyczne

Rozdział 15. Programowanie probabilistyczne

  • 15.1. Relacyjne modele probabilistyczne
  • 15.2. Modele probabilistyczne otwartego wszechświata
  • 15.3. Śledzenie skomplikowanego świata
  • 15.4. Programy jako modele probabilistyczne
  • Podsumowanie
  • Bibliografia i uwagi historyczne

Rozdział 16. Podejmowanie prostych decyzji

  • 16.1. Przekonania i pragnienia w warunkach niepewności
  • 16.2. Podstawy teorii użyteczności
  • 16.3. Funkcje użyteczności
  • 16.4. Wieloatrybutowe funkcje użyteczności
  • 16.5. Sieci decyzyjne
  • 16.6. Wartość informacji
  • 16.7. Nieznane preferencje
  • Podsumowanie
  • Bibliografia i uwagi historyczne

Rozdział 17. Podejmowanie złożonych decyzji

  • 17.1. Sekwencyjne problemy decyzyjne
  • 17.2. Algorytmy dla problemów mdp
  • 17.3. Problem bandyty i jego warianty
  • 17.4. Częściowo obserwowalne problemy mdp (pomdp)
  • 17.5. Algorytmy rozwiązywania problemów pomdp
  • Podsumowanie
  • Bibliografia i uwagi historyczne

Rozdział 18. Podejmowanie decyzji w środowisku wieloagentowym

  • 18.1. Właściwości środowisk wieloagentowych
  • 18.2. Teoria gier niekooperatywnych
  • 18.3. Teoria gier kooperatywnych
  • 18.4. Kolektywne podejmowanie decyzji
  • Podsumowanie
  • Bibliografia i uwagi historyczne

Dodatki

Dodatek a. Kompendium matematyczne

  • A.1. Analiza złożoności i notacja "dużego o"
  • A.2. Wektory, macierze i algebra liniowa
  • A.3. Rozkłady prawdopodobieństwa
  • A.4. Wybrane operacje na zbiorach
  • Bibliografia i uwagi historyczne

Dodatek b. Konwencje notacyjne i pseudokod

  • B.1. Definiowanie składni za pomocą notacji bnf
  • B.2. Algorytmy w formie pseudokodu
  • B.3. Uzupełniające materiały online

Skorowidz

 

Kategoria: Programowanie
Zabezpieczenie: Watermark
Watermark
Watermarkowanie polega na znakowaniu plików wewnątrz treści, dzięki czemu możliwe jest rozpoznanie unikatowej licencji transakcyjnej Użytkownika. E-książki zabezpieczone watermarkiem można odczytywać na wszystkich urządzeniach odtwarzających wybrany format (czytniki, tablety, smartfony). Nie ma również ograniczeń liczby licencji oraz istnieje możliwość swobodnego przenoszenia plików między urządzeniami. Pliki z watermarkiem są kompatybilne z popularnymi programami do odczytywania ebooków, jak np. Calibre oraz aplikacjami na urządzenia mobilne na takie platformy jak iOS oraz Android.
ISBN: 978-83-283-7609-0
Rozmiar pliku: 28 MB

BESTSELLERY

Menu

Zamknij