Facebook - konwersja
Pobierz fragment

Uczenie maszynowe z użyciem Scikit-Learn, Keras i TensorFlow - ebook

Wydawnictwo:
Tłumacz:
Data wydania:
4 lipca 2023
Format ebooka:
PDF
Format PDF
czytaj
na laptopie
czytaj
na tablecie
Format e-booków, który możesz odczytywać na tablecie oraz laptopie. Pliki PDF są odczytywane również przez czytniki i smartfony, jednakze względu na komfort czytania i brak możliwości skalowania czcionki, czytanie plików PDF na tych urządzeniach może być męczące dla oczu. Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na laptopie
Pliki PDF zabezpieczone watermarkiem możesz odczytać na dowolnym laptopie po zainstalowaniu czytnika dokumentów PDF. Najpowszechniejszym programem, który umożliwi odczytanie pliku PDF na laptopie, jest Adobe Reader. W zależności od potrzeb, możesz zainstalować również inny program - e-booki PDF pod względem sposobu odczytywania nie różnią niczym od powszechnie stosowanych dokumentów PDF, które odczytujemy każdego dnia.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na tablecie
Aby odczytywać e-booki na swoim tablecie musisz zainstalować specjalną aplikację. W zależności od formatu e-booka oraz systemu operacyjnego, który jest zainstalowany na Twoim urządzeniu może to być np. Bluefire dla EPUBa lub aplikacja Kindle dla formatu MOBI.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
Pobierz fragment
179,00

Uczenie maszynowe z użyciem Scikit-Learn, Keras i TensorFlow - ebook

Pojęcia, techniki i narzędzia służące do tworzenia systemów inteligentnych.

Głębokie sieci neuronowe mają niesamowity potencjał. Osiągnięcia ostatnich lat nadały procesom uczenia głębokiego zupełnie nową jakość. Obecnie nawet programiści niezaznajomieni z tą technologią mogą korzystać z prostych i niezwykle skutecznych narzędzi, pozwalających na sprawne implementowanie programów uczących się z danych.

Znajdziesz tu rozsądne, intuicyjne objaśnienia, a także mnóstwo praktycznych porad!

Francois Chollet, twórca interfejsu Keras

To trzecie wydanie bestsellerowego przewodnika po uczeniu maszynowym. Książka jest adresowana do osób, które chcą wejść w świat uczenia maszynowego ... przy czym wystarczą do tego minimalne umiejętności programistyczne. Zawarto tu minimum teorii, a proces nauki ułatwiają liczne przykłady i ćwiczenia. Dzięki temu przyswoisz niezbędne pojęcia i nauczysz się korzystać z gotowych platform produkcyjnych Pythona: Scikit-Learn, Keras i TensorFlow. W tym wydaniu pokazano różnorodne techniki, od prostej regresji liniowej aż po głębokie sieci neuronowe. Szybko nauczysz się tworzyć działające systemy inteligentne!

W książce między innymi:

  • korzystanie ze Scikit-Learn, z TensorFlow i Keras
  • modele: maszyny wektorów nośnych, drzewa decyzyjne, lasy losowe i metody zespołowe
  • uczenie nienadzorowane: redukcja wymiarowości, analiza skupień, wykrywanie anomalii
  • sieci neuronowe: sieci splotowe, rekurencyjne, modele dyfuzyjne i transformatory
  • trenowanie i implementacje sieci neuronowych

To znakomite wprowadzenie do teoretycznych i praktycznych rozważań na temat rozwiązywania problemów za pomocą sieci neuronowych!

Pete Warden, mobile lead projektu Tensor Flow

Twórz i trenuj nowoczesne sieci neuronowe!

Spis treści

Przedmowa

Część I. Podstawy uczenia maszynowego

  • 1. Krajobraz uczenia maszynowego
    • Czym jest uczenie maszynowe?
    • Dlaczego warto korzystać z uczenia maszynowego?
    • Przykładowe zastosowania
    • Rodzaje systemów uczenia maszynowego
      • Nadzorowanie uczenia
      • Uczenie wsadowe i uczenie przyrostowe
      • Uczenie z przykładów i uczenie z modelu
    • Główne problemy uczenia maszynowego
      • Niedobór danych uczących
      • Niereprezentatywne dane uczące
      • Dane kiepskiej jakości
      • Nieistotne cechy
      • Przetrenowanie danych uczących
      • Niedotrenowanie danych uczących
      • Podsumowanie
    • Testowanie i ocenianie
      • Strojenie hiperparametrów i dobór modelu
      • Niezgodność danych
    • Ćwiczenia
  • 2. Nasz pierwszy projekt uczenia maszynowego
    • Praca z rzeczywistymi danymi
    • Przeanalizuj całokształt projektu
      • Określ zakres problemu
      • Wybierz wskaźnik wydajności
      • Sprawdź założenia
    • Zdobądź dane
      • Uruchom przykładowy kod w serwisie Google Colab
      • Zapisz zmiany w kodzie i w danych
      • Zalety i wady interaktywności
      • Kod w książce a kod w notatnikach Jupyter
      • Pobierz dane
      • Rzut oka na strukturę danych
      • Stwórz zbiór testowy
    • Odkrywaj i wizualizuj dane, aby zdobywać nowe informacje
      • Zwizualizuj dane geograficzne
      • Poszukaj korelacji
      • Eksperymentuj z kombinacjami atrybutów
    • Przygotuj dane pod algorytmy uczenia maszynowego
      • Oczyść dane
      • Obsługa tekstu i atrybutów kategorialnych
      • Skalowanie i przekształcanie cech
      • Niestandardowe transformatory
      • Potoki transformujące
    • Wybierz i wytrenuj model
      • Trenuj i oceń model za pomocą zbioru uczącego
      • Dokładniejsze ocenianie za pomocą sprawdzianu krzyżowego
    • Wyreguluj swój model
      • Metoda przeszukiwania siatki
      • Metoda losowego przeszukiwania
      • Metody zespołowe
      • Analizowanie najlepszych modeli i ich błędów
      • Oceń system za pomocą zbioru testowego
    • Uruchom, monitoruj i utrzymuj swój system
    • Teraz Twoja kolej!
    • Ćwiczenia
  • 3. Klasyfikacja
    • Zbiór danych MNIST
    • Uczenie klasyfikatora binarnego
    • Miary wydajności
      • Pomiar dokładności za pomocą sprawdzianu krzyżowego
      • Macierz pomyłek
      • Precyzja i pełność
      • Kompromis pomiędzy precyzją a pełnością
      • Wykres krzywej ROC
    • Klasyfikacja wieloklasowa
    • Analiza błędów
    • Klasyfikacja wieloetykietowa
    • Klasyfikacja wielowyjściowa
    • Ćwiczenia
  • 4. Uczenie modeli
    • Regresja liniowa
      • Równanie normalne
      • Złożoność obliczeniowa
    • Gradient prosty
      • Wsadowy gradient prosty
      • Stochastyczny spadek wzdłuż gradientu
      • Schodzenie po gradiencie z minigrupami
    • Regresja wielomianowa
    • Krzywe uczenia
    • Regularyzowane modele liniowe
      • Regresja grzbietowa
      • Regresja metodą LASSO
      • Regresja metodą elastycznej siatki
      • Wczesne zatrzymywanie
    • Regresja logistyczna
      • Szacowanie prawdopodobieństwa
      • Funkcje ucząca i kosztu
      • Granice decyzyjne
      • Regresja softmax
    • Ćwiczenia
  • 5. Maszyny wektorów nośnych
    • Liniowa klasyfikacja SVM
      • Klasyfikacja miękkiego marginesu
    • Nieliniowa klasyfikacja SVM
      • Jądro wielomianowe
      • Cechy podobieństwa
      • Gaussowskie jądro RBF
      • Klasy SVM i złożoność obliczeniowa
    • Regresja SVM
    • Mechanizm działania liniowych klasyfikatorów SVM
    • Problem dualny
      • Kernelizowane maszyny SVM
    • Ćwiczenia
  • 6. Drzewa decyzyjne
    • Uczenie i wizualizowanie drzewa decyzyjnego
    • Wyliczanie prognoz
    • Szacowanie prawdopodobieństw przynależności do klas
    • Algorytm uczący CART
    • Złożoność obliczeniowa
    • Wskaźnik Giniego czy entropia?
    • Hiperparametry regularyzacyjne
    • Regresja
    • Wrażliwość na orientację osi
    • Drzewa decyzyjne mają znaczną wariancję
    • Ćwiczenia
  • 7. Uczenie zespołowe i losowe lasy
    • Klasyfikatory głosujące
    • Agregacja i wklejanie
      • Agregacja i wklejanie w module Scikit-Learn
      • Ocena OOB
      • Rejony losowe i podprzestrzenie losowe
    • Losowe lasy
      • Zespół Extra-Trees
      • Istotność cech
    • Wzmacnianie
      • AdaBoost
      • Wzmacnianie gradientowe
      • Wzmacnianie gradientu w oparciu o histogram
    • Kontaminacja
    • Ćwiczenia
  • 8. Redukcja wymiarowości
    • Klątwa wymiarowości
    • Główne strategie redukcji wymiarowości
      • Rzutowanie
      • Uczenie rozmaitościowe
    • Analiza PCA
      • Zachowanie wariancji
      • Główne składowe
      • Rzutowanie na d wymiarów
      • Implementacja w module Scikit-Learn
      • Współczynnik wariancji wyjaśnionej
      • Wybór właściwej liczby wymiarów
      • Algorytm PCA w zastosowaniach kompresji
      • Losowa analiza PCA
      • Przyrostowa analiza PCA
    • Rzutowanie losowe
    • Algorytm LLE
    • Inne techniki redukowania wymiarowości
    • Ćwiczenia
  • 9. Techniki uczenia nienadzorowanego
    • Analiza skupień: algorytm centroidów i DBSCAN
      • Algorytm centroidów
      • Granice algorytmu centroidów
      • Analiza skupień w segmentacji obrazu
      • Analiza skupień w uczeniu półnadzorowanym
      • Algorytm DBSCAN
      • Inne algorytmy analizy skupień
    • Mieszaniny gaussowskie
      • Wykrywanie anomalii za pomocą mieszanin gaussowskich
      • Wyznaczanie liczby skupień
      • Bayesowskie modele mieszane
      • Inne algorytmy służące do wykrywania anomalii i nowości
    • Ćwiczenia

Część II. Sieci neuronowe i uczenie głębokie

  • 10. Wprowadzenie do sztucznych sieci neuronowych i ich implementacji z użyciem interfejsu Keras
    • Od biologicznych do sztucznych neuronów
      • Neurony biologiczne
      • Operacje logiczne przy użyciu neuronów
      • Perceptron
      • Perceptron wielowarstwowy i propagacja wsteczna
      • Regresyjne perceptrony wielowarstwowe
      • Klasyfikacyjne perceptrony wielowarstwowe
    • Implementowanie perceptronów wielowarstwowych za pomocą interfejsu Keras
      • Tworzenie klasyfikatora obrazów za pomocą interfejsu sekwencyjnego
      • Tworzenie regresyjnego perceptronu wielowarstwowego za pomocą interfejsu sekwencyjnego
      • Tworzenie złożonych modeli za pomocą interfejsu funkcyjnego
      • Tworzenie modeli dynamicznych za pomocą interfejsu podklasowego
      • Zapisywanie i odczytywanie modelu
      • Stosowanie wywołań zwrotnych
      • Wizualizacja danych za pomocą narzędzia TensorBoard
    • Dostrajanie hiperparametrów sieci neuronowej
      • Liczba warstw ukrytych
      • Liczba neuronów w poszczególnych warstwach ukrytych
      • Współczynnik uczenia, rozmiar grupy i pozostałe hiperparametry
    • Ćwiczenia
  • 11. Uczenie głębokich sieci neuronowych
    • Problemy zanikających/eksplodujących gradientów
      • Inicjalizacje wag Glorota i He
      • Lepsze funkcje aktywacji
      • Normalizacja wsadowa
      • Obcinanie gradientu
    • Wielokrotne stosowanie gotowych warstw
      • Uczenie transferowe w interfejsie Keras
      • Nienadzorowane uczenie wstępne
      • Uczenie wstępne za pomocą dodatkowego zadania
    • Szybsze optymalizatory
      • Optymalizacja momentum
      • Przyspieszony spadek wzdłuż gradientu (algorytm Nesterova)
      • AdaGrad
      • RMSProp
      • Optymalizator Adam
      • AdaMax
      • Nadam
      • AdamW
    • Harmonogramowanie współczynnika uczenia
    • Regularyzacja jako sposób zapobiegania przetrenowaniu
      • Regularyzacja l1 i l2
      • Porzucanie
      • Regularyzacja typu Monte Carlo (MC)
      • Regularyzacja typu max-norm
    • Podsumowanie i praktyczne wskazówki
    • Ćwiczenia
  • 12. Modele niestandardowe i uczenie za pomocą modułu TensorFlow
    • Krótkie omówienie modułu TensorFlow
    • Korzystanie z modułu TensorFlow jak z biblioteki NumPy
      • Tensory i operacje
      • Tensory a biblioteka NumPy
      • Konwersje typów
      • Zmienne
      • Inne struktury danych
    • Dostosowywanie modeli i algorytmów uczenia
      • Niestandardowe funkcje straty
      • Zapisywanie i wczytywanie modeli zawierających elementy niestandardowe
      • Niestandardowe funkcje aktywacji, inicjalizatory, regularyzatory i ograniczenia
      • Niestandardowe wskaźniki
      • Niestandardowe warstwy
      • Niestandardowe modele
      • Funkcje straty i wskaźniki oparte na elementach wewnętrznych modelu
      • Obliczanie gradientów za pomocą różniczkowania automatycznego
      • Niestandardowe pętle uczenia
    • Funkcje i grafy modułu TensorFlow
      • AutoGraph i kreślenie
      • Reguły związane z funkcją TF
    • Ćwiczenia
  • 13. Wczytywanie i wstępne przetwarzanie danych za pomocą modułu TensorFlow
    • Interfejs tf.data
      • Łączenie przekształceń
      • Tasowanie danych
      • Przeplatanie wierszy z różnych plików
      • Wstępne przetwarzanie danych
      • Składanie wszystkiego w całość
      • Pobieranie wstępne
      • Stosowanie zestawu danych z interfejsem Keras
    • Format TFRecord
      • Skompresowane pliki TFRecord
      • Wprowadzenie do buforów protokołów
      • Bufory protokołów w module TensorFlow
      • Wczytywanie i analizowanie składni obiektów Example
      • Obsługa list list za pomocą bufora protokołów SequenceExample
    • Warstwy przetwarzania wstępnego Keras
      • Warstwa Normalization
      • Warstwa Discretization
      • Warstwa CategoryEncoding
      • Warstwa StringLookup
      • Warstwa Hashing
      • Kodowanie cech kategorialnych za pomocą wektorów właściwościowych
      • Wstępne przetwarzanie tekstu
      • Korzystanie z wytrenowanych składników modelu językowego
      • Warstwy wstępnego przetwarzania obrazów
    • Projekt TensorFlow Datasets (TFDS)
    • Ćwiczenia
  • 14. Głębokie widzenie komputerowe za pomocą splotowych sieci neuronowych
    • Struktura kory wzrokowej
    • Warstwy splotowe
      • Filtry
      • Stosy map cech
      • Implementacja warstw splotowych w interfejsie Keras
      • Zużycie pamięci operacyjnej
    • Warstwa łącząca
    • Implementacja warstw łączących w interfejsie Keras
    • Architektury splotowych sieci neuronowych
      • LeNet-5
      • AlexNet
      • GoogLeNet
      • VGGNet
      • ResNet
      • Xception
      • SENet
      • Inne interesujące struktury
      • Wybór właściwej struktury CNN
    • Implementacja sieci ResNet-34 za pomocą interfejsu Keras
    • Korzystanie z gotowych modeli w interfejsie Keras
    • Gotowe modele w uczeniu transferowym
    • Klasyfikowanie i lokalizowanie
    • Wykrywanie obiektów
      • W pełni połączone sieci splotowe
      • Sieć YOLO
    • Śledzenie obiektów
    • Segmentacja semantyczna
    • Ćwiczenia
  • 15. Przetwarzanie sekwencji za pomocą sieci rekurencyjnych i splotowych
    • Neurony i warstwy rekurencyjne
      • Komórki pamięci
      • Sekwencje wejść i wyjść
    • Uczenie sieci rekurencyjnych
    • Prognozowanie szeregów czasowych
      • Rodzina modeli ARMA
      • Przygotowywanie danych dla modeli uczenia maszynowego
      • Prognozowanie za pomocą modelu liniowego
      • Prognozowanie za pomocą prostej sieci rekurencyjnej
      • Prognozowanie za pomocą głębokich sieci rekurencyjnych
      • Prognozowanie wielowymiarowych szeregów czasowych
      • Prognozowanie kilka taktów w przód
      • Prognozowanie za pomocą modelu sekwencyjnego
    • Obsługa długich sekwencji
      • Zwalczanie problemu niestabilnych gradientów
      • Zwalczanie problemu pamięci krótkotrwałej
    • Ćwiczenia
  • 16. Przetwarzanie języka naturalnego za pomocą sieci rekurencyjnych i mechanizmów uwagi
    • Generowanie tekstów szekspirowskich za pomocą znakowej sieci rekurencyjnej
      • Tworzenie zestawu danych uczących
      • Budowanie i uczenie modelu char-RNN
      • Generowanie sztucznego tekstu szekspirowskiego
      • Stanowe sieci rekurencyjne
    • Analiza opinii
      • Maskowanie
      • Korzystanie z gotowych reprezentacji właściwościowych i modeli językowych
    • Sieć typu koder - dekoder służąca do neuronowego tłumaczenia maszynowego
      • Dwukierunkowe sieci rekurencyjne
      • Przeszukiwanie wiązkowe
    • Mechanizmy uwagi
      • Liczy się tylko uwaga: pierwotna architektura transformatora
    • Zatrzęsienie modeli transformatorów
    • Transformatory wizualne
    • Biblioteka Transformers firmy Hugging Face
    • Ćwiczenia
  • 17. Autokodery, generatywne sieci przeciwstawne i modele rozpraszające
    • Efektywne reprezentacje danych
    • Analiza PCA za pomocą niedopełnionego autokodera liniowego
    • Autokodery stosowe
      • Implementacja autokodera stosowego za pomocą interfejsu Keras
      • Wizualizowanie rekonstrukcji
      • Wizualizowanie zestawu danych Fashion MNIST
      • Nienadzorowane uczenie wstępne za pomocą autokoderów stosowych
      • Wiązanie wag
      • Uczenie autokoderów pojedynczo
    • Autokodery splotowe
    • Autokodery odszumiające
    • Autokodery rzadkie
    • Autokodery wariacyjne
    • Generowanie obrazów Fashion MNIST
    • Generatywne sieci przeciwstawne
      • Problemy związane z uczeniem sieci GAN
      • Głębokie splotowe sieci GAN
      • Rozrost progresywny sieci GAN
      • Sieci StyleGAN
    • Modele rozpraszające
    • Ćwiczenia
  • 18. Uczenie przez wzmacnianie
    • Uczenie się optymalizowania nagród
    • Wyszukiwanie strategii
    • Wprowadzenie do narzędzia OpenAI Gym
    • Sieci neuronowe jako strategie
    • Ocenianie czynności: problem przypisania zasługi
    • Gradienty strategii
    • Procesy decyzyjne Markowa
    • Uczenie metodą różnic czasowych
    • Q-uczenie
      • Strategie poszukiwania
      • Przybliżający algorytm Q-uczenia i Q-uczenie głębokie
    • Implementacja modelu Q-uczenia głębokiego
    • Odmiany Q-uczenia głębokiego
      • Ustalone Q-wartości docelowe
      • Podwójna sieć DQN
      • Odtwarzanie priorytetowych doświadczeń
      • Walcząca sieć DQN
    • Przegląd popularnych algorytmów RN
    • Ćwiczenia
  • 19. Wielkoskalowe uczenie i wdrażanie modeli TensorFlow
    • Eksploatacja modelu TensorFlow
      • Korzystanie z systemu TensorFlow Serving
      • Tworzenie usługi predykcyjnej na platformie Vertex AI
      • Uwierzytelnianie i autoryzacja w serwisie GCP
      • Wykonywanie zadań predykcji wsadowych w usłudze Vertex AI
    • Wdrażanie modelu na urządzeniu mobilnym lub wbudowanym
    • Przetwarzanie modelu na stronie internetowej
    • Przyspieszanie obliczeń za pomocą procesorów graficznych
      • Zakup własnej karty graficznej
      • Zarządzanie pamięcią operacyjną karty graficznej
      • Umieszczanie operacji i zmiennych na urządzeniach
      • Przetwarzanie równoległe na wielu urządzeniach
    • Uczenie modeli za pomocą wielu urządzeń
      • Zrównoleglanie modelu
      • Zrównoleglanie danych
      • Uczenie wielkoskalowe za pomocą interfejsu strategii rozpraszania
      • Uczenie modelu za pomocą klastra TensorFlow
      • Realizowanie dużych grup zadań uczenia za pomocą usługi Vertex AI
      • Strojenie hiperparametrów w usłudze Vertex AI
    • Ćwiczenia
    • Dziękuję!

A. Lista kontrolna projektu uczenia maszynowego

B. Różniczkowanie automatyczne

C. Specjalne struktury danych

D. Grafy TensorFlow

Skorowidz

Kategoria: Programowanie
Zabezpieczenie: Watermark
Watermark
Watermarkowanie polega na znakowaniu plików wewnątrz treści, dzięki czemu możliwe jest rozpoznanie unikatowej licencji transakcyjnej Użytkownika. E-książki zabezpieczone watermarkiem można odczytywać na wszystkich urządzeniach odtwarzających wybrany format (czytniki, tablety, smartfony). Nie ma również ograniczeń liczby licencji oraz istnieje możliwość swobodnego przenoszenia plików między urządzeniami. Pliki z watermarkiem są kompatybilne z popularnymi programami do odczytywania ebooków, jak np. Calibre oraz aplikacjami na urządzenia mobilne na takie platformy jak iOS oraz Android.
ISBN: 978-83-8322-424-4
Rozmiar pliku: 71 MB

BESTSELLERY

Kategorie: