Facebook - konwersja

Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego - ebook

Wydawnictwo:
Data wydania:
3 lutego 2015
Format ebooka:
MOBI
Format MOBI
czytaj
na czytniku
czytaj
na tablecie
czytaj
na smartfonie
Jeden z najczęściej wybieranych formatów wśród czytelników e-booków. Możesz go odczytać na czytniku Kindle oraz na smartfonach i tabletach po zainstalowaniu specjalnej aplikacji. Więcej informacji znajdziesz w dziale Pomoc.
Multiformat
E-booki w Virtualo.pl dostępne są w opcji multiformatu. Oznacza to, że po dokonaniu zakupu, e-book pojawi się na Twoim koncie we wszystkich formatach dostępnych aktualnie dla danego tytułu. Informacja o dostępności poszczególnych formatów znajduje się na karcie produktu.
, PDF
Format PDF
czytaj
na laptopie
czytaj
na tablecie
Format e-booków, który możesz odczytywać na tablecie oraz laptopie. Pliki PDF są odczytywane również przez czytniki i smartfony, jednakze względu na komfort czytania i brak możliwości skalowania czcionki, czytanie plików PDF na tych urządzeniach może być męczące dla oczu. Więcej informacji znajdziesz w dziale Pomoc.
Multiformat
E-booki w Virtualo.pl dostępne są w opcji multiformatu. Oznacza to, że po dokonaniu zakupu, e-book pojawi się na Twoim koncie we wszystkich formatach dostępnych aktualnie dla danego tytułu. Informacja o dostępności poszczególnych formatów znajduje się na karcie produktu.
, EPUB
Format EPUB
czytaj
na czytniku
czytaj
na tablecie
czytaj
na smartfonie
Jeden z najpopularniejszych formatów e-booków na świecie. Niezwykle wygodny i przyjazny czytelnikom - w przeciwieństwie do formatu PDF umożliwia skalowanie czcionki, dzięki czemu możliwe jest dopasowanie jej wielkości do kroju i rozmiarów ekranu. Więcej informacji znajdziesz w dziale Pomoc.
Multiformat
E-booki w Virtualo.pl dostępne są w opcji multiformatu. Oznacza to, że po dokonaniu zakupu, e-book pojawi się na Twoim koncie we wszystkich formatach dostępnych aktualnie dla danego tytułu. Informacja o dostępności poszczególnych formatów znajduje się na karcie produktu.
(3w1)
Multiformat
E-booki sprzedawane w księgarni Virtualo.pl dostępne są w opcji multiformatu - kupujesz treść, nie format. Po dodaniu e-booka do koszyka i dokonaniu płatności, e-book pojawi się na Twoim koncie w Mojej Bibliotece we wszystkich formatach dostępnych aktualnie dla danego tytułu. Informacja o dostępności poszczególnych formatów znajduje się na karcie produktu przy okładce. Uwaga: audiobooki nie są objęte opcją multiformatu.
czytaj
na laptopie
Pliki PDF zabezpieczone watermarkiem możesz odczytać na dowolnym laptopie po zainstalowaniu czytnika dokumentów PDF. Najpowszechniejszym programem, który umożliwi odczytanie pliku PDF na laptopie, jest Adobe Reader. W zależności od potrzeb, możesz zainstalować również inny program - e-booki PDF pod względem sposobu odczytywania nie różnią niczym od powszechnie stosowanych dokumentów PDF, które odczytujemy każdego dnia.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na tablecie
Aby odczytywać e-booki na swoim tablecie musisz zainstalować specjalną aplikację. W zależności od formatu e-booka oraz systemu operacyjnego, który jest zainstalowany na Twoim urządzeniu może to być np. Bluefire dla EPUBa lub aplikacja Kindle dla formatu MOBI.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na czytniku
Czytanie na e-czytniku z ekranem e-ink jest bardzo wygodne i nie męczy wzroku. Pliki przystosowane do odczytywania na czytnikach to przede wszystkim EPUB (ten format możesz odczytać m.in. na czytnikach PocketBook) i MOBI (ten fromat możesz odczytać m.in. na czytnikach Kindle).
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na smartfonie
Aby odczytywać e-booki na swoim smartfonie musisz zainstalować specjalną aplikację. W zależności od formatu e-booka oraz systemu operacyjnego, który jest zainstalowany na Twoim urządzeniu może to być np. iBooks dla EPUBa lub aplikacja Kindle dla formatu MOBI.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
29,00

Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego - ebook

Popularnonaukowa książka o dowodach matematycznych

  • Trzydzieści wybranych twierdzeń matematycznych z pełnymi dowodami
  • Trzy główne typy dowodów: dowody wprost, dowody przez sprowadzenie do niedorzeczności i dowody indukcyjne
  • Opowieści o niewymierności liczby i liczby e, nieprzeliczalności zbioru liczb rzeczywistych, twierdzeniu Pitagorasa, nieskończoności zbioru liczb pierwszych i inne
Profesor na wykładzie myśli A, mówi B, a na tablicy pisze C. A student słyszy D, widzi E, do kajetu pisze F, a i tak nic z tego nie rozumie.
prof. L. Jeśmanowicz

Większości z nas matematyka kojarzy się ze zlepkiem niezrozumiałych twierdzeń, ślęczeniem nad zeszytami i strużką potu na czole podczas zmagań pod tablicą. W dodatku - bez względu na to, czy darzysz królową nauk gorącą miłością, czy też nie - na którymś etapie życia po prostu musisz ją zaliczyć. Jednak nie ma co drzeć szat i wylewać krokodylich łez.

Pozaszkolna matematyka to naprawdę świetna zabawa, sensacyjne odkrycia i fascynujące opowieści. Nie na darmo przecież matematyk i publicysta Michał Szurek twierdzi, że "matematyka jest jedyną humanistyczną nauką ścisłą". Trudno Ci w to uwierzyć? W takim razie potrzebujesz dowodu! Książeczka, którą trzymasz w ręku, jest Twoim biletem wstępu do tej części matematyki, która większości (także wykształconych) ludzi wydaje się niedostępna, a może nawet dziwna.

I jeśli pragniesz ją jak najszybciej odłożyć, dowiedz się, że jest ona właśnie dla Ciebie! Zamieszczone tu dowody czyta się jak zwykłe opowieści, choć nie skutkuje to najmniejszym uszczerbkiem na ich ścisłości. Dla zrozumienia wszystkich dowodów wystarcza znajomość matematyki na poziomie szkoły średniej, a większość rozdziałów jest odpowiednia także dla gimnazjalistów. Po lekturze niektóre matematyczne zawiłości zaczniesz rozgryzać w sposób iście lekkoatletyczny - "Rzut oka na tablicę i wszystko widać".


Dariusz Laskowski jest absolwentem Wydziału Matematyki Uniwersytetu Mikołaja Kopernika w Toruniu, nauczycielem matematyki z wieloletnim doświadczeniem wciąż zafascynowanym swoim przedmiotem, jest też autorem kilkunastu artykułów zamieszczonych w "Delcie", "Matematyce w Szkole", "Magazynie Miłosników Matematyki", "Matematyce - Czasopiśmie dla nauczycieli".

W swojej książce Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego w taki sposób przybliża Czytelnikowi metody dowodowe stosowane w matematyce, że można czytać z przyjemnością ich rozumienia.

Spis treści

Wstęp (5)

1. Oswoić dowody (7)

2. Indukcja matematyczna (11)

3. Ile przekątnych ma n-kąt foremny? (15)

4. Ile jest liczb pierwszych? (19)

5. Liczb wymiernych jest tyle samo co liczb naturalnych (25)

6. Niewymierność liczby √2 (29)

7. Liczb rzeczywistych jest więcej niż liczb naturalnych (35)

8. Kąty wewnętrzne trójkąta (39)

9. Trysekcja kąta metodą Archimedesa (43)

10. Twierdzenie Pitagorasa (47)

11. Jak obliczyć wartość sinusa 36°? (51)

12. Twierdzenie sinusów (59)

13. Dowód poprawności konstrukcji pięciokąta foremnego (63)

14. Twierdzenie odwrotne do twierdzenia Pitagorasa i trójkąty pitagorejskie (69)

15. Szereg odwrotności liczb naturalnych (77)

16. Suma szeregu geometrycznego (83)

17. Wokół trójkąta Pascala (87)

18. Zbieżność szeregu odwrotności silni kolejnych liczb naturalnych (93)

19. Liczba e (97)

20. Liczba e jest niewymierna (101)

21. Suma odwrotności liczb pierwszych jest nieskończona (103)

22. Tożsamości trygonometryczne (107)

23. Twierdzenie cosinusów (113)

24. Twierdzenie Talesa (115)

25. Pewna cecha ciągu liczb pierwszych (119)

26. Reductio ad absurdum (123)

27. Ile liczb naturalnych jest między zerem a jedynką? (129)

28. Pojęcia pierwotne i aksjomaty (135)

29. Jak blisko można podejść do liczby Π (139)

30. Liczby algebraiczne i liczby przestępne (145)

Bibliografia (148)

Skorowidz (149)

Kategoria: Matematyka
Zabezpieczenie: Watermark
Watermark
Watermarkowanie polega na znakowaniu plików wewnątrz treści, dzięki czemu możliwe jest rozpoznanie unikatowej licencji transakcyjnej Użytkownika. E-książki zabezpieczone watermarkiem można odczytywać na wszystkich urządzeniach odtwarzających wybrany format (czytniki, tablety, smartfony). Nie ma również ograniczeń liczby licencji oraz istnieje możliwość swobodnego przenoszenia plików między urządzeniami. Pliki z watermarkiem są kompatybilne z popularnymi programami do odczytywania ebooków, jak np. Calibre oraz aplikacjami na urządzenia mobilne na takie platformy jak iOS oraz Android.
ISBN: 978-83-283-1141-1
Rozmiar pliku: 5,4 MB

BESTSELLERY

Kategorie: