Facebook - konwersja
  • Empik Go W empik go

Machine Learning with the Elastic Stack - ebook

Wydawnictwo:
Data wydania:
31 stycznia 2019
Format ebooka:
EPUB
Format EPUB
czytaj
na czytniku
czytaj
na tablecie
czytaj
na smartfonie
Jeden z najpopularniejszych formatów e-booków na świecie. Niezwykle wygodny i przyjazny czytelnikom - w przeciwieństwie do formatu PDF umożliwia skalowanie czcionki, dzięki czemu możliwe jest dopasowanie jej wielkości do kroju i rozmiarów ekranu. Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na tablecie
Aby odczytywać e-booki na swoim tablecie musisz zainstalować specjalną aplikację. W zależności od formatu e-booka oraz systemu operacyjnego, który jest zainstalowany na Twoim urządzeniu może to być np. Bluefire dla EPUBa lub aplikacja Kindle dla formatu MOBI.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na czytniku
Czytanie na e-czytniku z ekranem e-ink jest bardzo wygodne i nie męczy wzroku. Pliki przystosowane do odczytywania na czytnikach to przede wszystkim EPUB (ten format możesz odczytać m.in. na czytnikach PocketBook) i MOBI (ten fromat możesz odczytać m.in. na czytnikach Kindle).
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na smartfonie
Aby odczytywać e-booki na swoim smartfonie musisz zainstalować specjalną aplikację. W zależności od formatu e-booka oraz systemu operacyjnego, który jest zainstalowany na Twoim urządzeniu może to być np. iBooks dla EPUBa lub aplikacja Kindle dla formatu MOBI.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.

Machine Learning with the Elastic Stack - ebook

Leverage Elastic Stack’s machine learning features to gain valuable insight from your data

Key Features

  • Combine machine learning with the analytic capabilities of Elastic Stack
  • Analyze large volumes of search data and gain actionable insight from them
  • Use external analytical tools with your Elastic Stack to improve its performance

Book Description

Machine Learning with the Elastic Stack is a comprehensive overview of the embedded commercial features of anomaly detection and forecasting. The book starts with installing and setting up Elastic Stack. You will perform time series analysis on varied kinds of data, such as log files, network flows, application metrics, and financial data.

As you progress through the chapters, you will deploy machine learning within the Elastic Stack for logging, security, and metrics. In the concluding chapters, you will see how machine learning jobs can be automatically distributed and managed across the Elasticsearch cluster and made resilient to failure.

By the end of this book, you will understand the performance aspects of incorporating machine learning within the Elastic ecosystem and create anomaly detection jobs and view results from Kibana directly.

What you will learn

  • Install the Elastic Stack to use machine learning features
  • Understand how Elastic machine learning is used to detect a variety of anomaly types
  • Apply effective anomaly detection to IT operations and security analytics
  • Leverage the output of Elastic machine learning in custom views, dashboards, and proactive alerting
  • Combine your created jobs to correlate anomalies of different layers of infrastructure
  • Learn various tips and tricks to get the most out of Elastic machine learning

Who this book is for

If you are a data professional eager to gain insight on Elasticsearch data without having to rely on a machine learning specialist or custom development, Machine Learning with the Elastic Stack is for you. Those looking to integrate machine learning within their search and analytics applications will also find this book very useful. Prior experience with the Elastic Stack is needed to get the most out of this book.

Rich Collier is a solutions architect at Elastic. Joining the Elastic team from the Prelert acquisition, Rich has over 20 years' experience as a solutions architect and pre-sales systems engineer for software, hardware, and service-based solutions. Rich's technical specialties include big data analytics, machine learning, anomaly detection, threat detection, security operations, application performance management, web applications, and contact center technologies. Rich is based in Boston, Massachusetts. Bahaaldine Azarmi, or Baha for short, is a solutions architect at Elastic. Prior to this position, Baha co-founded ReachFive, a marketing data platform focused on user behavior and social analytics. Baha also worked for different software vendors such as Talend and Oracle, where he held solutions architect and architect positions. Before Machine Learning with the Elastic Stack, Baha authored books including Learning Kibana 5.0, Scalable Big Data Architecture, and Talend for Big Data. Baha is based in Paris and has an MSc in computer science from Polytech'Paris.
Kategoria: Computer Technology
Język: Angielski
Zabezpieczenie: Watermark
Watermark
Watermarkowanie polega na znakowaniu plików wewnątrz treści, dzięki czemu możliwe jest rozpoznanie unikatowej licencji transakcyjnej Użytkownika. E-książki zabezpieczone watermarkiem można odczytywać na wszystkich urządzeniach odtwarzających wybrany format (czytniki, tablety, smartfony). Nie ma również ograniczeń liczby licencji oraz istnieje możliwość swobodnego przenoszenia plików między urządzeniami. Pliki z watermarkiem są kompatybilne z popularnymi programami do odczytywania ebooków, jak np. Calibre oraz aplikacjami na urządzenia mobilne na takie platformy jak iOS oraz Android.
ISBN: 978-1-78847-177-0
Rozmiar pliku: 22 MB

BESTSELLERY

Kategorie: