Facebook - konwersja

Podstawy matematyki w data science. Algebra liniowa, rachunek prawdopodobieństwa i statystyka - ebook

Wydawnictwo:
Tłumacz:
Data wydania:
14 lutego 2023
Format ebooka:
MOBI
Format MOBI
czytaj
na czytniku
czytaj
na tablecie
czytaj
na smartfonie
Jeden z najczęściej wybieranych formatów wśród czytelników e-booków. Możesz go odczytać na czytniku Kindle oraz na smartfonach i tabletach po zainstalowaniu specjalnej aplikacji. Więcej informacji znajdziesz w dziale Pomoc.
Multiformat
E-booki w Virtualo.pl dostępne są w opcji multiformatu. Oznacza to, że po dokonaniu zakupu, e-book pojawi się na Twoim koncie we wszystkich formatach dostępnych aktualnie dla danego tytułu. Informacja o dostępności poszczególnych formatów znajduje się na karcie produktu.
, PDF
Format PDF
czytaj
na laptopie
czytaj
na tablecie
Format e-booków, który możesz odczytywać na tablecie oraz laptopie. Pliki PDF są odczytywane również przez czytniki i smartfony, jednakze względu na komfort czytania i brak możliwości skalowania czcionki, czytanie plików PDF na tych urządzeniach może być męczące dla oczu. Więcej informacji znajdziesz w dziale Pomoc.
Multiformat
E-booki w Virtualo.pl dostępne są w opcji multiformatu. Oznacza to, że po dokonaniu zakupu, e-book pojawi się na Twoim koncie we wszystkich formatach dostępnych aktualnie dla danego tytułu. Informacja o dostępności poszczególnych formatów znajduje się na karcie produktu.
, EPUB
Format EPUB
czytaj
na czytniku
czytaj
na tablecie
czytaj
na smartfonie
Jeden z najpopularniejszych formatów e-booków na świecie. Niezwykle wygodny i przyjazny czytelnikom - w przeciwieństwie do formatu PDF umożliwia skalowanie czcionki, dzięki czemu możliwe jest dopasowanie jej wielkości do kroju i rozmiarów ekranu. Więcej informacji znajdziesz w dziale Pomoc.
Multiformat
E-booki w Virtualo.pl dostępne są w opcji multiformatu. Oznacza to, że po dokonaniu zakupu, e-book pojawi się na Twoim koncie we wszystkich formatach dostępnych aktualnie dla danego tytułu. Informacja o dostępności poszczególnych formatów znajduje się na karcie produktu.
(3w1)
Multiformat
E-booki sprzedawane w księgarni Virtualo.pl dostępne są w opcji multiformatu - kupujesz treść, nie format. Po dodaniu e-booka do koszyka i dokonaniu płatności, e-book pojawi się na Twoim koncie w Mojej Bibliotece we wszystkich formatach dostępnych aktualnie dla danego tytułu. Informacja o dostępności poszczególnych formatów znajduje się na karcie produktu przy okładce. Uwaga: audiobooki nie są objęte opcją multiformatu.
czytaj
na laptopie
Pliki PDF zabezpieczone watermarkiem możesz odczytać na dowolnym laptopie po zainstalowaniu czytnika dokumentów PDF. Najpowszechniejszym programem, który umożliwi odczytanie pliku PDF na laptopie, jest Adobe Reader. W zależności od potrzeb, możesz zainstalować również inny program - e-booki PDF pod względem sposobu odczytywania nie różnią niczym od powszechnie stosowanych dokumentów PDF, które odczytujemy każdego dnia.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na tablecie
Aby odczytywać e-booki na swoim tablecie musisz zainstalować specjalną aplikację. W zależności od formatu e-booka oraz systemu operacyjnego, który jest zainstalowany na Twoim urządzeniu może to być np. Bluefire dla EPUBa lub aplikacja Kindle dla formatu MOBI.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na czytniku
Czytanie na e-czytniku z ekranem e-ink jest bardzo wygodne i nie męczy wzroku. Pliki przystosowane do odczytywania na czytnikach to przede wszystkim EPUB (ten format możesz odczytać m.in. na czytnikach PocketBook) i MOBI (ten fromat możesz odczytać m.in. na czytnikach Kindle).
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na smartfonie
Aby odczytywać e-booki na swoim smartfonie musisz zainstalować specjalną aplikację. W zależności od formatu e-booka oraz systemu operacyjnego, który jest zainstalowany na Twoim urządzeniu może to być np. iBooks dla EPUBa lub aplikacja Kindle dla formatu MOBI.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
69,00

Podstawy matematyki w data science. Algebra liniowa, rachunek prawdopodobieństwa i statystyka - ebook

Rosnąca dostępność danych sprawiła, że data science i uczenie maszynowe są powszechnie używane do przeróżnych celów. Równocześnie wiele osób pomija analizy matematyczne przed rozpoczęciem przetwarzania danych. A to wiąże się z ryzykiem popełnienia istotnych błędów już na etapie projektowania danego systemu. Dopiero dogłębne zrozumienie niektórych koncepcji matematycznych i umiejętność ich praktycznego zastosowania sprawia, że kandydat na analityka danych ma szansę osiągnąć poziom profesjonalisty.

To książka przeznaczona dla osób, które chcą dobrze zrozumieć matematyczne podstawy nauki o danych i nauczyć się stosowania niektórych koncepcji w praktyce. Wyjaśniono tu takie zagadnienia jak rachunek różniczkowy i całkowy, rachunek prawdopodobieństwa, algebra liniowa i statystyka, pokazano także, w jaki sposób posługiwać się nimi w regresji liniowej, regresji logistycznej i w tworzeniu sieci neuronowych. Poszczególne tematy zostały omówione zrozumiale, przystępnie, bez naukowego żargonu, za to z licznymi praktycznymi przykładami, co dodatkowo ułatwia przyswojenie koncepcji i prawideł matematyki. Opanowanie zawartej tu wiedzy pozwala uniknąć wielu kosztownych błędów projektowych i trafniej wybierać optymalne rozwiązania!

Dzięki książce nauczysz się:

  • używać kodu Pythona i jego bibliotek do eksplorowania koncepcji matematycznych
  • posługiwać się regresją liniową i regresją logistyczną
  • opisywać dane metodami statystycznymi i testować hipotezy
  • manipulować wektorami i macierzami
  • łączyć wiedzę matematyczną z użyciem modeli regresji
  • unikać typowych błędów w stosowaniu matematyki w data science

Zrozum matematykę i efektywnie używaj danych!

Spis treści

Przedmowa

1. Podstawy matematyki oraz rachunku różniczkowego i całkowego

  • Teoria liczb
  • Kolejność działań
  • Zmienne
  • Funkcje
  • Sumowanie
  • Potęgowanie
  • Logarytmy
  • Liczba Eulera i logarytmy naturalne
    • Liczba Eulera
    • Logarytmy naturalne
  • Granice
  • Pochodne
    • Pochodne cząstkowe
    • Reguła łańcuchowa
  • Całki
  • Podsumowanie
  • Ćwiczenia

2. Prawdopodobieństwo

  • Zrozumieć prawdopodobieństwo
    • Prawdopodobieństwo a statystyka
  • Matematyka prawdopodobieństw
    • Prawdopodobieństwa łączne
    • Prawdopodobieństwa alternatywne
    • Prawdopodobieństwo warunkowe i twierdzenie Bayesa
    • Łączne i alternatywne prawdopodobieństwa warunkowe
  • Rozkład dwumianowy
  • Rozkład beta
  • Podsumowanie
  • Ćwiczenia

3. Statystyka opisowa i wnioskowanie statystyczne

  • Czym są dane?
  • Statystyka opisowa a wnioskowanie statystyczne
  • Populacje, próby i obciążenie
  • Statystyka opisowa
    • Średnia i średnia ważona
    • Mediana
    • Dominanta
    • Wariancja i odchylenie standardowe
    • Rozkład normalny
    • Dystrybuanta odwrotna
    • Standaryzacja Z
  • Wnioskowanie statystyczne
    • Centralne twierdzenie graniczne
    • Przedziały ufności
    • Wartości p
    • Testowanie hipotez
  • Rozkład t: analizowanie małych prób
  • Big data i błąd teksańskiego snajpera
  • Podsumowanie
  • Ćwiczenia

4. Algebra liniowa

  • Co to jest wektor?
    • Dodawanie i łączenie wektorów
    • Skalowanie wektorów
    • Powłoka i zależność liniowa
  • Przekształcenia liniowe
    • Wektory bazowe
    • Mnożenie macierzy przez wektor
  • Mnożenie macierzy
  • Wyznaczniki
  • Specjalne rodzaje macierzy
    • Macierz kwadratowa
    • Macierz jednostkowa
    • Macierz odwrotna
    • Macierz diagonalna
    • Macierz trójkątna
    • Macierz rzadka
  • Układy równań i macierze odwrotne
  • Wektory i wartości własne
  • Podsumowanie
  • Ćwiczenia

5. Regresja liniowa

  • Podstawowa regresja liniowa
  • Reszty i kwadraty błędu
  • Znajdowanie najlepiej dopasowanej linii
    • Równanie w formie zamkniętej
    • Techniki wykorzystujące macierze odwrotne
    • Metoda gradientu prostego
  • Nadmierne dopasowanie i wariancja
  • Metoda stochastycznego gradientu prostego
  • Współczynnik korelacji
  • Istotność statystyczna
  • Współczynnik determinacji
  • Błąd standardowy estymacji
  • Przedziały przewidywania
  • Podział danych na treningowe i testowe
  • Wielokrotna regresja liniowa
  • Podsumowanie
  • Ćwiczenia

6. Regresja logistyczna i klasyfikacja

  • Na czym polega regresja logistyczna?
  • Przeprowadzanie regresji logistycznej
    • Funkcja logistyczna
    • Dopasowywanie krzywej logistycznej
  • Regresja logistyczna z wieloma zmiennymi
  • Logarytm szansy
  • R-kwadrat
  • Wartości p
  • Podziały na dane treningowe i testowe
  • Macierz błędów
  • Twierdzenie Bayesa a klasyfikacja
  • Krzywa ROC/pole pod krzywą
  • Nierównowaga klas
  • Podsumowanie
  • Ćwiczenia

7. Sieci neuronowe

  • Kiedy używać sieci neuronowych i uczenia głębokiego?
  • Prosta sieć neuronowa
    • Funkcje aktywacji
    • Propagacja w przód
  • Propagacja wsteczna
    • Obliczanie pochodnych względem wag i biasów
    • Metoda gradientu stochastycznego
  • Używanie scikit-learn
  • Ograniczenia sieci neuronowych i uczenia maszynowego
  • Podsumowanie
  • Ćwiczenie

8. Porady zawodowe i droga naprzód

  • Nowa definicja data science
  • Krótka historia data science
  • Szukanie przewagi
    • Biegłość w SQL-u
    • Biegłość w programowaniu
    • Wizualizacja danych
    • Znajomość branży
    • Produktywna nauka
    • Praktyk czy doradca?
  • Na co trzeba uważać w pracy związanej z data science?
    • Definicja roli
    • Skupienie organizacyjne i akceptacja
    • Adekwatne zasoby
    • Rozsądne cele
    • Konkurowanie z istniejącymi systemami
    • Twoja rola nie jest tym, czego się spodziewałeś
  • Czy Twoja praca marzeń nie istnieje?
  • Co dalej?
  • Podsumowanie

A. Tematy dodatkowe

B. Odpowiedzi do ćwiczeń

Skorowidz

Kategoria: Matematyka
Zabezpieczenie: Watermark
Watermark
Watermarkowanie polega na znakowaniu plików wewnątrz treści, dzięki czemu możliwe jest rozpoznanie unikatowej licencji transakcyjnej Użytkownika. E-książki zabezpieczone watermarkiem można odczytywać na wszystkich urządzeniach odtwarzających wybrany format (czytniki, tablety, smartfony). Nie ma również ograniczeń liczby licencji oraz istnieje możliwość swobodnego przenoszenia plików między urządzeniami. Pliki z watermarkiem są kompatybilne z popularnymi programami do odczytywania ebooków, jak np. Calibre oraz aplikacjami na urządzenia mobilne na takie platformy jak iOS oraz Android.
ISBN: 978-83-8322-014-7
Rozmiar pliku: 19 MB

BESTSELLERY

Kategorie: