Second Order Parabolic Differential Equations [DRM] - ebook
Second Order Parabolic Differential Equations [DRM] - ebook
Ebook zabezpieczony DRM. Dowiedz się więcej https://www.empik.com/pomoc/faq-ebook.
Pamiętaj, ebook będzie dostępny do pobrania wyłącznie w wybranym przez Ciebie formacie.
Ebook po zakupie nie będzie dostępny do czytania w aplikacji Empik Go.
This book is an introduction to the general theory of second order parabolic differential equations, which model many important, time-dependent physical systems. It studies the existence, uniqueness, and regularity of solutions to a variety of problems with Dirichlet boundary conditions and general linear and nonlinear boundary conditions by means of a priori estimates. The first seven chapters give a description of the linear theory and are suitable for a graduate course on partial differential equations. The last eight chapters cover the nonlinear theory for smooth solutions. They include much of the author's research and are aimed at researchers in the field. A unique feature is the emphasis on time-varying domains.
Pamiętaj, ebook będzie dostępny do pobrania wyłącznie w wybranym przez Ciebie formacie.
Ebook po zakupie nie będzie dostępny do czytania w aplikacji Empik Go.
This book is an introduction to the general theory of second order parabolic differential equations, which model many important, time-dependent physical systems. It studies the existence, uniqueness, and regularity of solutions to a variety of problems with Dirichlet boundary conditions and general linear and nonlinear boundary conditions by means of a priori estimates. The first seven chapters give a description of the linear theory and are suitable for a graduate course on partial differential equations. The last eight chapters cover the nonlinear theory for smooth solutions. They include much of the author's research and are aimed at researchers in the field. A unique feature is the emphasis on time-varying domains.
| Kategoria: | Mathematics |
| Język: | Angielski |
| Zabezpieczenie: | brak |
| ISBN: | 978-981-4498-11-1 |
| Rozmiar pliku: | 43 MB |