Shadery. Zaawansowane programowanie w GLSL - ebook
Shadery. Zaawansowane programowanie w GLSL - ebook
Programowanie procesorów graficznych (GPU) staje się coraz popularniejsze. Dzieje się tak przede wszystkim z powodu dynamicznie rozwijającego się rynku gier i zapotrzebowania na deweloperów w tej dziedzinie, ale również z powodu wysokich możliwości obliczeniowych dostarczanych przez te układy.
Shadery (programy wykonywane przez GPU) w przeciągu kilku ostatnich lat znacząco się rozwinęły. Aktualnie w OpenGL 4.5 dostępnych jest ich sześć, co jest znacznym wzrostem w stosunku do dwóch, w nadal wszechobecnym, choć archaicznym już OpenGL 2.1. Są one wykorzystywane głównie do zadań związanych z odwzorowywaniem fizycznych własności świata w celu wyświetlania realistycznej grafiki trójwymiarowej, ale także coraz częściej do rozwiązywania bardziej ogólnych problemów natury matematycznej i algorytmicznej.
Książka ta zawiera wyczerpujący opis języka programowania shaderów GLSL w wersji 4.50. Stanowi ona niezbędnik dla każdego kto zamierza szybko odnaleźć się w nowoczesnej grafice trójwymiarowej.
Dowiesz się
· Czym są shadery
· Jak wygląda architektura współczesnego GPU i jakie ma ona znaczenie od strony programistycznej
· Jak programować potok renderujący
· Na czym polega i jak działa teselacja
· Czym jest i jak programuje się shader obliczeniowy (ang. compute shader)
Powinieneś znać
· API OpenGL w stopniu przynajmniej podstawowym
· Matematyczne podstawy grafiki trójwymiarowej
Spis treści
Rozdział 1. Wstęp
1.1. Do kogo jest skierowana ta książka?
1.2. Przydatne narzędzia
Rozdział 2. Zrozumieć GPU
2.1. Co to jest Shader?
2.2. Architektura GPU
2.2.1. GPU versus CPU
2.2.2. Jednostki wykonawcze GPU
2.2.3. Przełączanie kontekstu i unikanie opóźnień
2.2.4. Przetwarzanie rozgałęzień
2.2.5. Model pamięci
Rozdział 3. Potok renderujący OpenGL
3.1. Najważniejsze etapy potoku grafi cznego
3.1.1. Przetwarzanie geometrii
3.1.2. Rasteryzacja
3.1.3. Przetwarzanie fragmentów
3.1.4. Postprocess fragmentów
3.2. Wprowadzenie do programowalnego potoku
3.2.1. Shader wierzchołków
3.2.2. Teselacja
3.2.3. Shader geometrii
3.2.4. Shader fragmentów
3.3. Kompilacja
3.3.1. Proces kompilacji, wiązania i linkowania
3.3.2. Wielokrotne wiązanie shaderów tego samego typu
3.3.3. Rozłączne programy
3.3.4. Status kompilacji
Rozdział 4. Podstawy programowania
4.1. Język programowania shaderów GLSL
4.2. Profile
4.3. Interpretacja schematów konstrukcji programistycznych
4.4. Nazwy identyfi katorów obiektów
4.5. Preprocesor
4.5.1. Kontrola wersji shadera (#version)
4.5.2. Defi niowanie symboli oraz makrodefi nicji (#defi ne, #undef) 54 4.5.3. Kontrola warunkowej kompilacji (#if, #ifdef, #ifndef, #elif, #else, #endif)
4.5.4. Wspomaganie warunkowej kompilacji (#error) 59 4.5.5. Wspomaganie diagnostyki kodu źródłowego (#line)
4.5.6. Sterowanie działaniem kompilatora (#pragma)
4.5.7. Zarządzanie zestawem rozszerzeń języka GLSL (#extension)
4.6. Typy danych
4.6.1. Bazowe typy numeryczne – skalary
4.6.2. Pochodne typy numeryczne – wektory
4.6.3. Pochodne typy numeryczne – macierze
4.6.4. Typy uchwytów
4.6.5. Typ subroutine
4.6.6. Struktury
4.6.7. Tablice
4.7. Zmienne
4.7.1. Zmienne wewnętrzne
4.7.2. Zmienne interfejsu
4.7.3. Blok interfejsu
4.7.4. Deklaracja obiektów użytkownika w modułach shadera
4.8. Zakres zmiennych
4.9. Operatory
4.10. Instrukcje kontroli przepływu
4.11. Funkcje
4.11.1. Deklaracja funkcji
4.11.2. Definicja funkcji
4.11.3. Przeładowywanie funkcji
4.11.4. Parametry funkcji i wartości zwracane
Rozdział 5. Dane
5.1. Generyczny magazyn danych (obiekt bufora)
5.1.1. Tworzenie buforów
5.1.2. Wiązanie buforów
5.1.3. Zarządzanie stanem obiektów buforowych
5.1.4. Swobodny dostęp do danych bufora
5.1.5. Kopiowanie buforów
5.1.6. Odczytywanie zawartości buforów
5.1.7. Usuwanie buforów
5.2. Zmienne oraz bloki uniform
5.2.1. Domyślny blok uniform
5.2.2. Nazwany blok uniform
5.3. Zmienne oraz bloki buffer
5.3.1. Blok buforowy
5.3.2. Kontrola dostępu do pamięci
5.3.3. Operacje atomowe na zmiennych buforowych
5.3.4. Organizacja danych w bloku
5.3.5. Własności stanu zmiennych oraz bloków buforowych
5.3.6. Pozyskiwanie lokacji zmiennych buforowych oraz aktualizacja danych 159 5.3.7. Wiązanie bloku buforowego
5.4. Sformatowany magazyn danych (obiekt tekstury)
5.4.1. Reprezentacja tekstur w OpenGL
5.4.2. Struktura magazynu danych
5.4.3. Tworzenie oraz usuwanie tekstur
5.4.4. Wiązanie tekstur
5.4.5. Alokacja oraz aktualizacja magazynu danych dla tekstur 169 5.4.6. Tekstura buforowa
5.5. Tekstury w shaderach
5.5.1. Mechanizm teksturowania
5.5.2. Zmienne sampler
5.5.3. Podstawowa metoda dostępu do złożonych typów tekstur
5.5.4. Funkcje wbudowane odpytywania tekstur
5.5.5. Zaawansowane funkcje wbudowane dostępu do danych tekstury 190 5.6. Obrazy w shaderach
5.6.1. Zmienne image
5.6.2. Podstawowe operacje na obrazie
5.6.3. Operacje atomowe na obrazie
5.7. Liczniki atomowe
5.7.1. Tworzenie liczników
5.7.2. Własności stanu liczników atomowych
5.7.3. Wiązanie buforów z licznikami
5.7.4. Operacje atomowe
5.8. Dodatkowe metody synchronizacji w dostępie do danych
5.8.1. Synchronizacja dostępu w shaderach
5.8.2. Synchronizacja dostępu w API
Rozdział 6. Programowanie potoku renderującego
6.1. Przykładowy program zawierający wszystkie podstawowe shadery
6.2. Ogólny obraz komunikacji międzyetapowej
6.3. Przekazywanie danych w potoku
6.3.1. Atrybuty shadera wierzchołków
6.3.2. Interfejsy in/out między etapami
6.3.3. Lokacje przy przekazywaniu danych między shaderami
6.3.4. Pełne a częściowe dopasowanie
6.3.5. Komponenty w lokacjach
6.3.6. Sposoby interpolacji przy przekazywaniu danych do shadera fragmentów
6.3.7. Wbudowany blok gl_PerVertex
6.4. Przebieg i własności teselacji
6.4.1. Deklaracja płatu i jego przekształcenie na właściwy prymityw poddawany teselacji
6.4.2. Stopnie teselacji
6.4.3. Opcje rozstawu
6.4.4. Teselacja trójkąta
6.4.5. Teselacja czworokąta
6.4.6. Teselacja izolinii
6.5. Programowanie shadera wierzchołków
6.5.1. Optymalizacja liczby wywołań
6.5.2. Zmienne wbudowane
6.6. Programowanie shadera kontroli teselacji
6.6.1. Przepływ danych i deklaracja liczby wywołań
6.6.2. Współbieżny dostęp do danych wyjściowych
6.6.3. Zmienne wbudowane
6.7. Programowanie shadera ewaluacji teselacji
6.7.1. Przepływ danych
6.7.2. Konfi guracja prymitywów za pomocą wejściowego kwalifi katora layout
6.7.3. Zmienne wbudowane
6.8. Programowanie shadera geometrii
6.8.1. Interfejs wejścia i deklaracja liczby wywołań shadera
6.8.2. Interfejs wyjścia – deklaracja prymitywu i emisja wierzchołków
6.8.3. Dedykowane prymitywy przylegające
6.8.4. Zmienne wbudowane
6.9. Programowanie shadera fragmentów
6.9.1. Renderowanie do bufora ramki
6.9.2. Odrzucanie fragmentów
6.9.3. Modyfikacja współrzędnych fragmentów
6.9.4. Wczesny test fragmentów i modyfi kacja buforu głębokości
6.9.5. Funkcje wbudowane i wywołania wspomagające
6.9.6. Zmienne wbudowane
Rozdział 7. Mechanizmy uzupełniające
7.1. Renderowanie do tekstur
7.1.1. Przygotowanie aplikacji
7.1.2. Renderowanie do wielu tekstur jako osobnych załączników koloru
7.1.3. Renderowanie do tekstur złożonych z wykorzystaniem shadera geometrii
7.2. Mechanizm Shader Subroutine
7.2.1. Funkcje wywoływane statycznie i dynamicznie
7.2.2. Elementy składniowe mechanizmu
7.2.3. Przykładowa implementacja
7.2.4. Konfigurowanie powiązań zmiennych z funkcjami subroutine
Rozdział 8. Shader obliczeniowy
8.1. Wprowadzenie
8.1.1. Kompilacja i użycie shadera obliczeniowego
8.2. Wywołania shadera obliczeniowego i grupy wykonawcze
8.2.1. Identyfikacja wywołania
8.2.2. Ograniczenia liczby wywołań
8.3. Charakterystyka przetwarzania
8.3.1. Przetwarzanie lokalnych grup roboczych
8.3.2. Pamięć współdzielona – kwalifikator shared
8.3.3. Synchronizacja
Dodatek
Dodatek A
Dodatek B
Dodatek C
Dodatek D
Dodatek E
Dodatek F
Słownik pojęć
Bibliografia
Kategoria: | Programowanie |
Zabezpieczenie: |
Watermark
|
ISBN: | 978-83-01-18397-4 |
Rozmiar pliku: | 3,8 MB |