Facebook - konwersja
Czytaj fragment
Pobierz fragment

  • Empik Go W empik go

Umysł matematyczny - ebook

Data wydania:
11 listopada 2013
Format ebooka:
EPUB
Format EPUB
czytaj
na czytniku
czytaj
na tablecie
czytaj
na smartfonie
Jeden z najpopularniejszych formatów e-booków na świecie. Niezwykle wygodny i przyjazny czytelnikom - w przeciwieństwie do formatu PDF umożliwia skalowanie czcionki, dzięki czemu możliwe jest dopasowanie jej wielkości do kroju i rozmiarów ekranu. Więcej informacji znajdziesz w dziale Pomoc.
Multiformat
E-booki w Virtualo.pl dostępne są w opcji multiformatu. Oznacza to, że po dokonaniu zakupu, e-book pojawi się na Twoim koncie we wszystkich formatach dostępnych aktualnie dla danego tytułu. Informacja o dostępności poszczególnych formatów znajduje się na karcie produktu.
, MOBI
Format MOBI
czytaj
na czytniku
czytaj
na tablecie
czytaj
na smartfonie
Jeden z najczęściej wybieranych formatów wśród czytelników e-booków. Możesz go odczytać na czytniku Kindle oraz na smartfonach i tabletach po zainstalowaniu specjalnej aplikacji. Więcej informacji znajdziesz w dziale Pomoc.
Multiformat
E-booki w Virtualo.pl dostępne są w opcji multiformatu. Oznacza to, że po dokonaniu zakupu, e-book pojawi się na Twoim koncie we wszystkich formatach dostępnych aktualnie dla danego tytułu. Informacja o dostępności poszczególnych formatów znajduje się na karcie produktu.
(2w1)
Multiformat
E-booki sprzedawane w księgarni Virtualo.pl dostępne są w opcji multiformatu - kupujesz treść, nie format. Po dodaniu e-booka do koszyka i dokonaniu płatności, e-book pojawi się na Twoim koncie w Mojej Bibliotece we wszystkich formatach dostępnych aktualnie dla danego tytułu. Informacja o dostępności poszczególnych formatów znajduje się na karcie produktu przy okładce. Uwaga: audiobooki nie są objęte opcją multiformatu.
czytaj
na tablecie
Aby odczytywać e-booki na swoim tablecie musisz zainstalować specjalną aplikację. W zależności od formatu e-booka oraz systemu operacyjnego, który jest zainstalowany na Twoim urządzeniu może to być np. Bluefire dla EPUBa lub aplikacja Kindle dla formatu MOBI.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na czytniku
Czytanie na e-czytniku z ekranem e-ink jest bardzo wygodne i nie męczy wzroku. Pliki przystosowane do odczytywania na czytnikach to przede wszystkim EPUB (ten format możesz odczytać m.in. na czytnikach PocketBook) i MOBI (ten fromat możesz odczytać m.in. na czytnikach Kindle).
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na smartfonie
Aby odczytywać e-booki na swoim smartfonie musisz zainstalować specjalną aplikację. W zależności od formatu e-booka oraz systemu operacyjnego, który jest zainstalowany na Twoim urządzeniu może to być np. iBooks dla EPUBa lub aplikacja Kindle dla formatu MOBI.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
Czytaj fragment
Pobierz fragment

Umysł matematyczny - ebook

Skąd wzięła się matematyka? Jaką drogę przyjęła ewolucja zdolności matematycznych? Co ma wspólnego matematyka z metaforami? Czy obiekty matematyczne istnieją poza czasem i przestrzenią? Czy nauka potrafi wyjaśnić niepojętą skuteczność matematyki w odkrywaniu praw przyrody?

W Umyśle matematycznym Bartosz Brożek i Mateusz Hohol przedstawiają najnowsze ustalenia nauk neurokognitywnych i ewolucyjnych, w odniesieniu do natury matematyki. Pokazują, że ewolucję zdolności matematycznych wyjaśnić można odwołując się nie tylko do wrodzonych umiejętności protomatematycznych, ale także do roli ewolucji kulturowej. Pytają także, czy współczesne teorie neurobiologiczne stanowią, jak się czasem sądzi, wyzwanie dla tradycyjnych koncepcji matematyki, w szczególności zaś dla platonizmu matematycznego. Autorzy rozważają także, skąd wzięła się – jak nazywa ją Eugene Wigner – niepojęta skuteczność matematyki w naukach przyrodniczych.

Umysł matematycznyny to pierwsza w literaturze polskiej pozycja, która zdaje relację z najnowszych ustaleń neurobiologii i psychologii odnośnie do zdolności matematycznych, a przy tym dostarcza pogłębionej, filozoficznej refleksji w odpowiedzi na pytanie, czy da się wyjaśnić naturę matematyki.

Kategoria: Filozofia
Zabezpieczenie: Watermark
Watermark
Watermarkowanie polega na znakowaniu plików wewnątrz treści, dzięki czemu możliwe jest rozpoznanie unikatowej licencji transakcyjnej Użytkownika. E-książki zabezpieczone watermarkiem można odczytywać na wszystkich urządzeniach odtwarzających wybrany format (czytniki, tablety, smartfony). Nie ma również ograniczeń liczby licencji oraz istnieje możliwość swobodnego przenoszenia plików między urządzeniami. Pliki z watermarkiem są kompatybilne z popularnymi programami do odczytywania ebooków, jak np. Calibre oraz aplikacjami na urządzenia mobilne na takie platformy jak iOS oraz Android.
ISBN: 978-83-7886-047-1
Rozmiar pliku: 1,8 MB

FRAGMENT KSIĄŻKI

Rozdział I

Zmysł liczby

1. Zwierzęta i liczby

Próbując zrozumieć źródła poznania matematycznego, musimy zacząć od pytań filo- i ontogenetycznych: kiedy i w jaki sposób zdolności matematyczne wzbogaciły arsenał umiejętności naszego gatunku? W którym momencie rozwoju osobniczego i na jakiej podstawie rozwijają się kompetencje matematyczne? Czy – jak zdaje się sugerować Stanislas Dehaene – rodzimy się z wykształconym w długim procesie ewolucji biologicznej „zmysłem liczby”, czy też nasza matematyka ma inne podstawy ewolucyjne? Jakiekolwiek próby udzielenia odpowiedzi na te pytania należy zacząć od przeglądu naszej aktualnej wiedzy o numerycznych zdolnościach innych zwierząt, a następnie porównać te zdolności najpierw z kompetencjami, z którymi rodzą się ludzie, a potem z tym, w jaki sposób z tych wrodzonych kompetencji w toku ontogenezy kształtują się zdolności matematyczne.

Albert Einstein i Leopold Infeld zauważają:

Fakt, że kot reaguje w podobny sposób wobec każdej myszy, wykazuje, że tworzy on pojęcia i teorie, służące mu za drogowskazy w jego świecie wrażeń zmysłowych. „Trzy drzewa” to coś innego niż „dwa drzewa”. Z kolei „dwa drzewa” to nie to samo, co „dwa kamienie”. Pojęcia samych tylko liczb 2, 3, 4, uwolnionych od przedmiotów, z których powstały, są tworami umysłu, opisującymi rzeczywistość naszego świata^().

Uwaga ta zawiera ważną myśl: by zwierzęta mogły funkcjonować w świecie, potrzebują pewnych konkretnych zdolności numerycznych – muszą na przykład odróżniać dwa drzewa od trzech drzew. Einstein i Infeld podkreślają jednak, że choć zdolności takie muszą u zwierząt występować, nie mają one charakteru matematycznego, gdyż matematyka nie dotyczy pojęć konkretnych (np. „dwa drzewa”), tylko abstrakcyjnych (pojęć „samych tylko liczb 2, 3, 4”). Jak jednak jest w rzeczywistości? Czy zwierzęta posiadają umiejętności matematyczne? Temu i podobnym pytaniom psycholodzy poświęcili dużo uwagi, ale droga do zrozumienia, w jaki sposób funkcjonują umysły zwierząt, była – i wciąż wydaje się, że jest – wyboista.

Wilhelm von Osten był emerytowanym berlińskim nauczycielem matematyki, a także gorącym zwolennikiem darwinizmu. Pasjonował się zdolnościami zwierząt, a do historii przeszedł jako właściciel i trener Mądrego Hansa – rosyjskiego ogiera, który rzekomo przejawiał niespotykane zdolności poznawcze i komunikacyjne. Po kilku latach szkolenia Hansa von Osten nabrał przekonania, że niezwykły koń potrafi wskazać bieżącą datę, czytać, rozróżniać kolory, a nawet wykonywać operacje arytmetyczne i działania na ułamkach. Mądry Hans udzielał odpowiedzi na zadawane mu pytania, stukając kopytem lub wskazując nim litery na tablicy, a także kręcąc głową^(). Opinie na temat nadzwyczajnych uzdolnień Hansa były podzielone – jedni widzieli w nich przejaw rzeczywistej inteligencji zwierzęcia, zaś inni całą sprawę uważali za mistyfikację von Ostena. Wątpliwości miała rozwiać specjalna komisja powołana w 1904 roku. W jej składzie znaleźli się psycholog, dyrektor zoo, weterynarz, a nawet kawalerzyści. Komisja nie dopatrzyła się oszustwa, jednak nie potwierdziła również nieprzeciętnych zdolności konia.

Jeden z członków komisji, psycholog z berlińskiego uniwersytetu Carl Stumpf, przeczuwał jednak, że „coś jest nie tak”, i polecił swojemu uczniowi, Oskarowi Pfungstowi, ponowne zbadanie sprawy^(). Druga komisja, w której składzie znalazł się Pfungst, zebrała się trzy lata później. W starannie sporządzonym sprawozdaniu uczony kategorycznie zaprzeczył rzekomym nadzwyczajnym zdolnościom konia – uznał między innymi, że nie ma on przypisywanych mu talentów matematycznych. Pfungst przeprowadził badania w różnych sytuacjach eksperymentalnych: gdy Hans znajdował się (lub nie) w towarzystwie osób znających odpowiedzi na pytania, gdy pytania zadawał właściciel lub ktoś inny, gdy Hansowi zasłaniano oczy. Okazało się, że poprawność reakcji uzależniona była od podpowiedzi, jakich ludzie nieświadomie udzielali zwierzęciu – na przykład ruchami głowy sygnalizowali, kiedy Hans ma przestać stukać kopytem, by wynik operacji arytmetycznej był prawidłowy. Pfungst wyjaśniał „mądrość” Hansa nieświadomym uwarunkowaniem go za pomocą systemu nagród przez von Ostena, tak by zwracał uwagę na pewne ruchy ciała. Emerytowany nauczyciel matematyki, który był szczerze przekonany o nadzwyczajności swojego konia, nie okazał się świadomym oszustem (bardzo przeżył werdykt wydany przez Pfungsta), ale jego podopieczny nie przeszedł do historii jako pierwszy koń matematyk.

Czy Mądry Hans zasłużył na swój przydomek? Bez wątpienia – wyuczenie się skomplikowanych wzorców zachowań i reagowanie na odpowiednio zinterpretowane subtelne zachowania ludzi („mowę ciała”) to przecież przejawy inteligencji. Mądrość Hansa przejawiała się jednak w czymś innym, niż chciał tego von Osten: nie w zdolności do liczenia, ale w czymś, co można określić jako umiejętności społeczne. Bardziej interesujące jest jednak inne pytanie: czy „zdemaskowanie” Mądrego Hansa świadczy o tym, że zwierzęta (poza człowiekiem) pozbawione są kompetencji numerycznych? Nic bardziej błędnego.

Przypadek Hansa stał się impulsem do systematycznych badań nad zdolnościami numerycznymi zwierząt, prowadzonych przez psychologów i etologów. Uświadomił również naukowcom, jak dużą ostrożność należy zachować, by nie wpaść w pułapkę antropomorfizacji. Dziś książki i czasopisma naukowe pełne są świadectw rzeczywistych zdolności numerycznych u ptaków, szympansów, szczurów i wielu innych gatunków. Nie oznacza to jednak, że obserwowane u zwierząt wrodzone kompetencje numeryczne tożsame są ze zdolnościami arytmetycznymi, nie mówiąc już o „całej” matematyce^(). O czym więc rozmawiamy, mówiąc o kompetencjach numerycznych? W literaturze zazwyczaj wymienia się w tym kontekście co najmniej trzy częściowo niezależne od siebie zdolności^(). Są nimi:

1) szacowanie analogowe (estymacja), polegające na porównywaniu liczebności dwóch zbiorów w celu rozstrzygnięcia, który z nich jest większy. Szacowanie nie wymaga przeliczania – proces ten ma charakter przybliżony, co oznacza, że nie musi angażować „wyodrębnionych”, dokładnych reprezentacji liczb (czasem odróżnia się zdolność szacowania wielkości niedużych zbiorów od zdolności szacowania wielkości zbiorów o znacznej liczbie elementów);

2) subitacja (subitizing), polegająca na szybkiej i – w odróżnieniu od szacowania – precyzyjnej ocenie liczebności zbiorów zawierających niewiele elementów. Czasem subitację wiąże się z „intuicyjną” oceną liczebności;

3) liczenie, które w porównaniu z subitacją jest procesem bardziej czasochłonnym i angażującym dodatkowe zdolności poznawcze. Liczenie pozwala określić liczebność zbiorów z większą precyzją niż szacowanie i może dotyczyć zbiorów o dużej liczbie elementów.

Przyjrzyjmy się kilku eksperymentom z udziałem zwierząt, rzucającym nieco światła na każdą z wymienionych zdolności numerycznych. Zacznijmy od umiejętności szacowania przez naczelne inne niż człowiek. W jednym z klasycznych eksperymentów, przeprowadzonym przez Duane’a M. Rumbaugha, Sue Savage-Rumbaugh oraz Marka T. Hegla, dwóm szympansom prezentowano dwie tace^(). Na każdej z nich znajdował się stos kostek czekolady. Każdy z szympansów mógł wybrać jedną z tac i zjeść smakołyk. Aż w 90% przypadków zwierzęta wybierały tacę z większą ilością czekolady. Następne zadanie było bardziej skomplikowane. Na każdej z tac badacze ułożyli po dwa stosy kostek czekolady. Na jednej z nich pierwszy stos był znacząco większy niż drugi; na drugiej tacy kostek było w sumie więcej, ale stosy były podobnej wielkości. Szympansy nie dały się nabrać i również w tym przypadku wybierały zwykle tacę z większą liczbą smakołyków.

Nowszy eksperyment przeprowadzono z udziałem orangutanów^(). Josep Call badał ich zdolność do szacowania, porównywania oraz przeprowadzania działań na dwóch niewielkich zbiorach, zawierających od jednego do sześciu elementów. Przedmiotem pierwszego eksperymentu była kwestia, jak naczelne radzą sobie z wyborem większego spośród dwóch zbiorów. Zbiory te były prezentowane najpierw jednocześnie, a potem także kolejno. Dzięki temu w chwili wyboru orangutan musiał polegać na pamięci, a nie bezpośredniej percepcji wzrokowej. Okazało się, że małpy radzą sobie z tym zadaniem bardzo dobrze. Z kolei w drugim eksperymencie badano zdolność orangutanów do wyboru większego zbioru, po tym jak początkowy zbiór został powiększony lub zmniejszony. W tym przypadku wyniki nie były tak jednoznaczne, ale sugerowały, że orangutany są zdolne do umysłowego łączenia (choć już nie rozdzielania) wielkości. Zdaniem Calla świadczy to o tym, że orangutany korzystają z jakichś mechanizmów reprezentacji, by wybrać zbiór zawierający większą liczbę elementów.

Zdolność do szacowania może niewątpliwie znacznie ułatwić życie wielu organizmom w różnych środowiskach, dlatego nie dziwi, że dobór naturalny „wyposażył” umysły zwierząt w taką funkcję. Pozostaje jednak pytanie, czy wybór większego zbioru przedmiotów odbywa się dzięki działaniu pojedynczego mechanizmu estymacyjnego, czy też kilku mechanizmów percepcyjnych. Josep Call i Philippe Rochat^() sprawdzili, jak orangutany radzą sobie z wyborem większych objętości, na podstawie testu, który weryfikuje, czy badany potrafi zastosować zasadę zachowania ilości^(). W jednym z eksperymentów wykorzystano przezroczyste pojemniki o różnych kształtach, w których podawano małpom sok. Za każdym razem orangutan miał wybrać jeden z dwóch pojemników, przy czym zawsze w jednym z nich było więcej soku niż w drugim. Orangutany w ponad 90% przypadków wybierały to naczynie, w którym było więcej soku, niezależnie od jego kształtu. Analizując ten i inne eksperymenty, w których sok – na oczach małp – przelewany był do innych pojemników, Call i Rochat zastanawiali się, jaką strategię kognitywną stosują orangutany przy wykonywaniu tego typu zadań: czy jest to bezpośrednie szacowanie objętości płynu w pojemniku niezależnie od jego kształtu, czy też wykorzystywanie czasowych i przestrzennych sygnałów pojawiających się przy przelewaniu płynu z jednego pojemnika do drugiego, czy może ustalenie, gdzie soku jest najwięcej, i śledzenie, do jakiego ostatecznie pojemnika ta porcja soku trafi. Okazało się, że jedynym spójnym wyjaśnieniem uzyskanych wyników jest uznanie, iż orangutany dysponują mechanizmem bezpośredniego szacowania objętości płynu w pojemniku. Nowsze badania Calla, przeprowadzone wraz z Danielem Hanusem, wskazują na to, że zdolność do szacowania rozwinęła się na podobnym poziomie także u innych naczelnych – szympansów, bonobo oraz goryli^().

Nie tylko prymaty potrafią szacować. Zdolność ta wydaje się powszechna u kręgowców. Przykładowo, badania z udziałem gołębi i wron, w których miały one porównywać wizualne wzory przedstawiające różną liczbę elementów, wykazały, że ptaki te potrafią dość dobrze rozróżniać liczebność zbiorów. Okazało się również, że trafność odpowiedzi (udzielanych poprzez wciśnięcie odpowiedniego przycisku) spadała zarówno wówczas, gdy liczba porównywanych obiektów rosła, jak i wtedy, kiedy porównywane wielkości były bardziej do siebie zbliżone^(). Przypomnijmy, że szacowanie liczebności zbiorów odbywa się na drodze analogowej, co znaczy, że nie musi angażować precyzyjnych reprezentacji numerycznych, jakie obecne są na przykład w liczeniu. W związku z tym proces szacowania jest obarczony możliwością błędu. Wiele badań wskazuje, że precyzja szacowania zależy od stosunku liczby przedmiotów znajdujących się w porównywanych zbiorach; mechanizm ten opisywany jest przez prawo Webera – Fechnera, do którego powrócimy w dalszej części tego rozdziału.

Jeśli chodzi o subitację^(), czyli szybką (ła-cińskie subitus znaczy „nagły”) i precyzyjną ocenę liczebności niewielkich zbiorów, w literaturze można znaleźć bardzo dużo wyników eksperymentów behawioralnych świadczących o tym, że zdolność ta występuje nie tylko u ludzi, lecz także u innych zwierząt, oraz że jest ona czymś innym niż liczenie^(). Badania tej umiejętności prowadzone są na osobnikach wyuczonych liczb, reprezentowanych słownie (liczebniki) – w przypadku papug – lub graficznie (symbole) – w przypadku naczelnych innych niż człowiek. Dla przykładu: wyniki badań przeprowadzonych przez Irene M. Pepperberg oraz Jesse’ego D. Gordona^() wskazują, że szara papuga afrykańska o imieniu Alex potrafiła natychmiast określać (w języku angielskim) liczebność, gdy prezentowanych było do sześciu elementów. Papuga radziła sobie dobrze zarówno wtedy, kiedy jej zadaniem było podanie liczby pewnej klasy obiektów znajdujących się w zróżnicowanym zestawie (np. ile jest niebieskich klocków?), jak i wtedy, kiedy miała podać łączną liczbę różnych elementów. W obydwu przypadkach liczba poprawnych odpowiedzi przekraczała 80%. Co więcej, papuga potrafiła odpowiednio zareagować, gdy w zestawie nie było żadnego elementu o określonych własnościach.

Z kolei zdolność do subitacji naczelnych była przedmiotem badań Tetsuro Matsuzawy i jego współpracowników, a uczestnikiem eksperymentów była szympansica Ai^(). Matsuzawa zaczął uczyć Ai liczb arabskich, gdy ta miała dziewięć lat. Po lewej stronie ekranu Ai widziała wzory złożone z kropek, zaś po prawej liczby, przy czym rozkład jednych i drugich był losowy. Szympansica miała wskazać liczbę, która odnosi się do prezentowanych kropek. Ai dobrze opanowała to zadanie, a ponadto nauczyła się określać liczbę, kolor oraz rodzaj obiektu w 300 próbkach. Matsuzawa zaznacza, że Ai radziła sobie najlepiej w przypadku dwóch sekwencji: kolor, przedmiot i liczba oraz przedmiot, kolor i liczba.

Przyjrzyjmy się teraz zdolności zwierząt do liczenia^(). By sprawdzić, czy zwierzęta korzystają jedynie z umiejętności subitacji, czy też potrafią liczyć, należy odpowiednio skracać lub wydłużać czas ekspozycji bodźców. Im jest on dłuższy, tym bardziej zwierzęta skłonne są do wielokrotnego spoglądania na prezentowane wzory, co może wskazywać na wykorzystanie rudymentarnej formy liczenia („protoliczenia”). Należy jednak pamiętać, że granica między liczeniem a subitacją – w szczególności gdy bada się je opisaną metodą – może być płynna.

Zdolność do rudymentarnych form liczenia badana była na bardzo wielu gatunkach zwierząt. Na przykład w klasycznych eksperymentach przeprowadzonych w latach pięćdziesiątych XX wieku przez Ottona Koehlera badano, czy kruki potrafią liczyć kropki w przedziale od 1 do 7^(). Krukom prezentowano najpierw na kartce papieru wzór złożony z kropek, a następnie miały one odnaleźć pokrywkę od garnka, na której widniała taka sama liczba kropek. Kropki na papierze i na pokrywkach układały się w różne wzory przestrzenne. Udzielenie poprawnej odpowiedzi wiązało się z gratyfikacją w postaci smakołyku. Poprawność odpowiedzi była bardzo duża, mimo że wzory oraz wielkość kropek były ciągle zmieniane. Koehler twierdził, że za uzyskane wyniki odpowiedzialny jest zmysł wizualno-przestrzenny. W wypadku tego eksperymentu trudno jednak rozstrzygnąć, czy kruki korzystały z liczenia, czy raczej z subitacji. W innym klasycznym badaniu zdolności do liczenia u ptaków, aby otrzymać nagrodę, gołębie uderzały przycisk dziobem. Jeśli zrobiły to odpowiednią liczbę razy, dostawały smakołyk^(). Patki szybko nauczyły się sprawnie wykonywać to zadanie. W tym wypadku rodzi się jednak kolejny problem interpretacyjny: czy tego typu zdolności, oparte na warunkowaniu instrumentalnym, można utożsamiać z liczeniem?

Mniejsze wątpliwości można mieć w przypadku zdolności do liczenia u naczelnych innych niż człowiek. W badaniach przeprowadzonych przez Sarę Boysen oraz Gary’ego Berntsona^() sprawdzano, czy szympansy podczas obliczeń korzystają z reprezentacji numerycznych. Okazało się, że małpy te potrafią równie dobrze prowadzić obliczenia (sumować) zarówno na fizycznych przedmiotach, jak i na liczbach arabskich w zakresie od 1 do 4. Przed szympansem stawiano tacę, nad którą znajdowały się trzy miseczki^(). Na tacy naukowcy kładli przedmiot, zaś na miseczkach od 1 do 3 przedmiotów. Szympansy warunkowane były w ten sposób, że jeśli wskazały miseczkę z liczbą smakołyków, która odpowiadała ich liczbie na tacy, otrzymywały nagrodę w postaci pożywienia. Gdy szympansy nauczyły się już dobrze tego przyporządkowania, przedmiot na jednym ze spodeczków został zastąpiony przez kartkę papieru, na której zapisano arabską cyfrę 1. Szympansy miały się nauczyć, że jednemu przedmiotowi na tacy odpowiada cyfra 1. Gdy opanowały to zadanie, dwa przedmioty na innym spodeczku zostały podmienione na kartkę z cyfrą 2. Analogicznie postąpiono z cyfrą 3 oraz wprowadzono cyfrę 4. Gdy szympansy nauczyły się już graficznych reprezentacji liczb, próbowano nauczyć je rozwiązywania zadań numerycznych. W klatkach małp umieszczono trzy schowki, w których mogły się znajdować pomarańcze. Po zajrzeniu do schowka szympans miał wskazać jedną z cyfr. Otrzymywał nagrodę, jeśli wskazana cyfra odpowiadała sumie pomarańczy znajdujących się we wszystkich schowkach. W dalszej części eksperymentu pomarańcze zostały zastąpione kartkami z zapisanymi na nich cyframi. Szympansy miały zsumować liczby i wskazać cyfrę z odpowiednim wynikiem. Trafność udzielanych przez nie odpowiedzi wynosiła około 70%.

Można z tego wnosić, że szympansy są zdolne do opanowania kardynalnego aspektu liczby (np. potrafią przyporządkować trzy pomarańcze do cyfry 3). Bardziej zaawansowana zdolność liczenia wymaga jednak jeszcze opanowania aspektu porządkowego, który pozwala na rozumienie hierarchii następujących po sobie liczb. Przykład wspominanej już szympansicy Ai świadczy o tym, że i tę zdolność – przynajmniej w rudymentarnej formie – potrafią opanować naczelne inne niż człowiek^(). Proces treningu był bardzo prosty. Szympansicy pokazywano na ekranie cyfrę 1. Dotykając jej, małpa otrzymywała nagrodę. Następnie na ekranie w przypadkowej kolejności pojawiały się 1 i 2. Nagradzane było dotknięcie cyfr w odpowiedniej kolejności, czyli najpierw 1, a potem 2. Później wprowadzono kolejne cyfry, aż do 9. Po odpowiednim treningu Ai całkiem dobrze radziła sobie z porządkowaniem liczb (ok. 80% poprawnych odpowiedzi).

Omówione wyżej eksperymenty pokazują, że zdolność do szacowania oraz subitacji jest czymś powszechnym w królestwie zwierząt. Z kolei liczenie wywołuje znacznie więcej kontrowersji. Choć ptaki dysponują niewątpliwie zdolnościami numerycznymi, trudno jednoznacznie stwierdzić, czy potrafią one liczyć w tym samym sensie co na przykład szympansy, nie mówiąc już o ludziach. Wydaje się, że porównania zdolności poznawczych ludzi i innych zwierząt nie wspierają jednoznacznie tezy, że zwierzęta są zdolne do liczenia. Można się spierać nawet o to, czy umiejętności opanowane przez szympansicę Ai można określić mianem „liczenia”. Trzeba przecież zauważyć, że jest to „liczenie” w bardzo ograniczonym zakresie, a przy tym będące wynikiem długotrwałego treningu zaordynowanego przez ludzi. Szympansy żyjące w środowisku naturalnym nie wykazują się (ani nawet nie mają okazji się wykazać) umiejętnością liczenia. Mówiąc ogólniej, choć istnienie zdolności numerycznych u zwierząt jest niewątpliwym faktem, trudno ustalić, jak mają się one do ludzkich umiejętności matematycznych. Jak słusznie zauważają Zhanna Reznikova i Boris Ryabko, „wciąż brakuje nam odpowiedniego »języka« analizy porównawczej”^().

Prowadzi to do jeszcze innego problemu: czy na pewno psycholodzy, etolodzy i kognitywiści odrobili wspomnianą przez nas na początku tego rozdziału lekcję wypływającą z historii Mądrego Hansa? Być może nasze szczytne zamiary prowadzą nas na manowce tak jak Wilhelma von Ostena? Choć standardy metodologiczne chronią nas dziś przed wieloma błędami, pokusa antropomorfizacji jest wielka – być może czasem za bardzo chcemy przypisać zwierzętom zdolności matematyczne obserwowane u ludzi. Einstein i Infeld – w przywoływanej wyżej wypowiedzi – mają zapewne rację, uczulając na różnicę pomiędzy konkretnymi, praktycznymi zdolnościami numerycznymi a abstrakcyjnym liczeniem.

------------------------------------------------------------------------

Zapraszamy do zakupu pełnej wersji książki

------------------------------------------------------------------------
mniej..

BESTSELLERY

Kategorie: