Facebook - konwersja

Zwinna analiza danych. Apache Hadoop dla każdego - ebook

Wydawnictwo:
Data wydania:
18 stycznia 2015
Format ebooka:
MOBI
Format MOBI
czytaj
na czytniku
czytaj
na tablecie
czytaj
na smartfonie
Jeden z najczęściej wybieranych formatów wśród czytelników e-booków. Możesz go odczytać na czytniku Kindle oraz na smartfonach i tabletach po zainstalowaniu specjalnej aplikacji. Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na tablecie
Aby odczytywać e-booki na swoim tablecie musisz zainstalować specjalną aplikację. W zależności od formatu e-booka oraz systemu operacyjnego, który jest zainstalowany na Twoim urządzeniu może to być np. Bluefire dla EPUBa lub aplikacja Kindle dla formatu MOBI.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na czytniku
Czytanie na e-czytniku z ekranem e-ink jest bardzo wygodne i nie męczy wzroku. Pliki przystosowane do odczytywania na czytnikach to przede wszystkim EPUB (ten format możesz odczytać m.in. na czytnikach PocketBook) i MOBI (ten fromat możesz odczytać m.in. na czytnikach Kindle).
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
czytaj
na smartfonie
Aby odczytywać e-booki na swoim smartfonie musisz zainstalować specjalną aplikację. W zależności od formatu e-booka oraz systemu operacyjnego, który jest zainstalowany na Twoim urządzeniu może to być np. iBooks dla EPUBa lub aplikacja Kindle dla formatu MOBI.
Informacje na temat zabezpieczenia e-booka znajdziesz na karcie produktu w "Szczegółach na temat e-booka". Więcej informacji znajdziesz w dziale Pomoc.
Produkt chwilowo niedostępny

Zwinna analiza danych. Apache Hadoop dla każdego - ebook

Duże zbiory danych dla każdego!

W dobie Big Data klasyczne podejście do analizy danych nie przynosi już pożądanych wyników. Skuteczna analiza gigantycznych zbiorów informacji, wyciąganie interesujących wniosków i prezentowanie ich w przejrzystej formie użytkownikowi wymagają mnóstwa czasu i środków. Zastanawiasz się, jak podejść do tego problemu, by zminimalizować ryzyko niepowodzenia? Na to i wiele innych pytań odpowiada ta fantastyczna książka.

Dzięki niej dowiesz się, jak zaprząc platformę Hadoop do własnych celów. Skorzystasz z prostych narzędzi, takich jak język Python, biblioteka D3.js oraz Apache Pig, i zastosujesz zwinne podejście do problemu, by osiągnąć zaskakujące efekty. Ponadto przekonasz się, jak łatwo można publikować dane w MongoDB, stosować wyszukiwarkę ElasticSearch oraz wykorzystać potencjał chmur obliczeniowych. Nauczysz się także wizualizować dane na wykresach, prognozować oraz podejmować właściwe działania. Książka ta jest doskonałą lekturą dla wszystkich osób stojących przed problemem skutecznej pracy z ogromnymi zbiorami danych.

Dzięki tej książce:

  • poznasz najlepsze narzędzia do przetwarzania zbiorów danych
  • wykorzystasz możliwości języka Python
  • sprawdzisz możliwości chmur obliczeniowych
  • błyskawicznie wyszukasz dane za pomocą ElasticSearch
  • zwizualizujesz dane z użyciem D3.js

Zwinnie rozwiąż problemy z dużymi zbiorami danych!

„Przy tak dużej popularności zagadnień Big Data i Data Science, lektura praktycznego instruktażu budowy aplikacji analitycznych jest mocno odświeżająca. Russel Jurney wprowadza nas, małymi porcjami implementacji, w swoją filozofię zwinności w dziedzinie analizy i aplikacyjnego wykorzystywania danych.”

Mat Kelcey, matpalm.com

Spis treści

Wstęp (7)

CZĘŚĆ I. PRZYGOTOWANIE (11)

1. Teoria (13)

  • Agile w Big Data (13)
  • Wielkie słowa (15)
  • Zespoły (16)
    • Rozpoznawanie problemów i szans (18)
    • Adaptowanie do zmian (18)
  • Proces wytwórczy w zwinnym Big Data (22)
  • Programowanie w parach i przegląd kodu (24)
  • Środowisko zwinnej pracy a produktywność (24)
    • Przestrzeń współpracy (25)
    • Przestrzeń prywatna (26)
    • Przestrzeń osobista (26)
  • Pomysły na wielkoformatowych wydrukach (26)

2. Dane (29)

  • E-mail (29)
  • Praca z surowymi danymi (30)
    • Surowe wiadomości e-mail (30)
    • Dane ustrukturyzowane a dane na wpół ustrukturyzowane (31)
    • SQL (31)
  • NoSQL (37)
    • Serializacja (38)
    • Wyodrębnianie i ujawnianie cech w ewoluującym schemacie (39)
    • Potoki danych (40)
  • Perspektywy danych (40)
    • Sieci (41)
    • Szeregi czasowe (44)
    • Język naturalny (44)
    • Prawdopodobieństwo (45)
  • Podsumowanie (48)

3. Narzędzia zwinności (49)

  • Skalowalność = prostota (49)
  • Zwinne przetwarzanie w Big Data (50)
  • Konfigurowanie wirtualnego środowiska dla języka Python (52)
  • Serializacja zdarzeń przez Avro (52)
    • Avro w Pythonie (53)
  • Zbieranie danych (55)
  • Przetwarzanie danych w Pigu (58)
    • Instalacja (58)
  • Publikowanie danych w MongoDB (62)
    • Instalacja (62)
    • Instalowanie sterownika MongoDB dla Javy (63)
    • Instalowanie łącznika mongo-hadoop (63)
    • Wypychanie danych z Piga do MongoDB (63)
  • Wyszukiwarka ElasticSearch (66)
    • Instalacja (66)
    • ElasticSearch i Pig - Wonderdog (66)
  • Refleksja o kształcie potoku przetwarzającego (69)
  • Lekkie aplikacje WWW (70)
    • Python i Flask (70)
  • Prezentacja danych (72)
    • Instalacja (73)
    • Bootstrap na start (73)
    • Wizualizacja danych: D3.js i nvd3.js (78)
  • Podsumowanie (78)

4. Do chmury! (81)

  • Wprowadzenie (81)
  • GitHub (83)
  • DotCloud (84)
    • Pierwszy krok w dotCloud (85)
    • Procesy robocze w Pythonie (87)
  • Amazon Web Services (87)
    • Simple Storage Service (88)
    • Elastic MapReduce (89)
    • MongoDB w wydaniu usługowym (94)
  • Monitorowanie (97)
    • Google Analytics (97)
    • Mortar Data (98)

CZĘŚĆ II. W GÓRĘ PIRAMIDY (101)

5. Zbieranie i wyświetlanie rekordów (105)

  • Montaż końcowy (106)
  • Pobieranie i serializowanie zawartości skrzynki pocztowej (107)
  • Przetwarzanie i publikowanie wiadomości e-mail (108)
  • Prezentowanie wiadomości w przeglądarce (110)
    • Serwowanie wiadomości przez Flask i pymongo (110)
    • Renderowanie strony HTML5 z szablonów Jinja2 (111)
  • Kontrola zwinności (115)
  • Listy wiadomości (116)
    • Generowanie list wiadomości w MongoDB (116)
    • Anatomia prezentacji (119)
  • Przeszukiwanie wiadomości e-mail (124)
    • Indeksowanie wiadomości - Pig, ElasticSearch i Wonderdog (124)
    • Wyszukiwanie wiadomości z poziomu aplikacji WWW (125)
  • Podsumowanie (126)

6. Wizualizacja danych na wykresach (129)

  • Dobre wykresy (130)
  • Wyodrębnianie encji: adresy e-mail (130)
    • Wyodrębnianie adresów (131)
  • Wizualizacja w przekroju czasowym (135)
  • Podsumowanie (141)

7. Eksplorowanie danych w raportach (143)

  • Budowanie raportów z wieloma wykresami (144)
  • Łączenie rekordów (147)
  • Ekstrakcja słów z wiadomości - TF-IDF (152)
  • Podsumowanie (158)

8. Stawianie prognoz (161)

  • Przewidywanie współczynnika odpowiedzi na wiadomości (162)
  • Personalizacja (167)
  • Podsumowanie (168)

9. Ukierunkowywanie działań (169)

  • Właściwości skutecznych wiadomości e-mail (170)
  • Lepsze przewidywanie - prosty predyktor bayesowski (171)
  • P(reply|from & to) (171)
  • P(reply|token) (171)
  • Predykcje w czasie rzeczywistym (174)
  • Rejestrowanie zdarzeń w aplikacji (177)
  • Podsumowanie (179)

Skorowidz (180)

Kategoria: Branża IT
Zabezpieczenie: Watermark
Watermark
Watermarkowanie polega na znakowaniu plików wewnątrz treści, dzięki czemu możliwe jest rozpoznanie unikatowej licencji transakcyjnej Użytkownika. E-książki zabezpieczone watermarkiem można odczytywać na wszystkich urządzeniach odtwarzających wybrany format (czytniki, tablety, smartfony). Nie ma również ograniczeń liczby licencji oraz istnieje możliwość swobodnego przenoszenia plików między urządzeniami. Pliki z watermarkiem są kompatybilne z popularnymi programami do odczytywania ebooków, jak np. Calibre oraz aplikacjami na urządzenia mobilne na takie platformy jak iOS oraz Android.
ISBN: 978-83-246-9945-2
Rozmiar pliku: 5,1 MB

BESTSELLERY

Kategorie: